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We consider a next generation neural �eld model which describes the dynamics of a network of
theta neurons on a ring. For some parameters the network supports stable time-periodic solutions.
Using the fact that the dynamics at each spatial location are described by a complex-valued Riccati
equation we derive a self-consistency equation that such periodic solutions must satisfy. We deter-
mine the stability of these solutions, and present numerical results to illustrate the usefulness of this
technique. The generality of this approach is demonstrated through its application to several other
systems involving delays, two-population architecture and networks of Winfree oscillators.

INTRODUCTION

The collective behaviour of large networks of neurons
is a topic of ongoing interest. One of the simplest forms
of behaviour is a periodic oscillation, which manifests it-
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N synaptically coupled theta neurons described by

d� j

dt
= 1 � cos� j + (1 + cos � j )( � j + �I j ); j = 1 ; : : : ; N;

(1)
where each� j
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II. PERIODIC STATES

In this paper we focus on states with periodically os-
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of the choice of the real-valued periodic functionW (x; t ),
parameters � 2 Cup = f z 2 C : Im z > 0g and ! > 0,
for every �xed x 2 [0; 2� ] Eq. (7) has a unique stable 2� -
periodic solution U(x; t ) that lies entirely in the open unit
disc D. Denoting the corresponding solution operator by

U : Cper ([0; 2� ]; R) � Cup � (0; 1 ) ! Cper ([0; 2� ]; D);

we can write the 2� -periodic solution of interest as

U(x; t ) = U
�

W (x; t );
� 0 + i

2!
; !

�
: (10)

Note that Cper ([0; 2� ]; R) here denotes the space of all
real-valued continuous 2� -periodic functions, while the
notation Cper ([0; 2� ]; D) stands for the space of all com-
plex continuous 2� -periodic functions with values in the
open unit disc D. Importantly, the variable x appears
in formula (10) as a parameter so that the function
W (x; �) 2 Cper ([0; 2� ]; R) with a �xed x is considered
as the �rst argument of the operator U.

As for the operator U, although it is not expl.7or
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equation (7). The linearization of Eq. (7) around this
solution reads

dv
dt

= M (x; t )v;

where

M (x; t ) = 2 i
�

W (x; t ) + � +
1

2!

�

+ 2 i
�

W (x; t ) + � �
1

2!

�
U(x; t ):

Moreover, using (8) and (9), we can show that the above
expression determines a function identical to the function
M (x; t ) in (12). Recalling that U(x; t ) is not only a sta-
ble but also an asymptotically stable solution of Eq. (7),
see Remark 1 in Appendix, we conclude that the corre-
sponding Floquet multiplier lies in the open unit disc D.
This ends the proof.

C. Numerical implementation

Eq. (11) describes a periodic orbit, and since Eq. (7)
is autonomous we need to append a pinning condition
in order to select a speci�c solution of Eq. (11). For a
solution of the type shown in Fig. 1 we choose

Z 2π

0
dx

Z 2π

0
W (x; t ) sin(2t)dt = 0 : (13)



6

FIG. 2. Period of the type of solution shown in Fig. 1 as a
function of � 0 (solid curve). The circles show values measured
from direct simulations of Eq. (4). Other parameters: A =
� 5, � = 1,  = 0 :01.

Fig. 3. Such a solution does not have the spatio-temporal
symmetry of the solution shown in Fig. 1. However, we
can follow it in just the same way as the parameter� 0 is
varied, and we obtain the results shown in Fig. 4. This
periodic orbit appears to be destroyed in a supercriti-
cal Hopf bifurcation as � 0 is decreased through approx-
imately � 3:2, and become unstable to a wandering pat-
tern at � 0 is increased through approximately� 2:34.

Note that the left asymptote in Fig. 2 coincides with
the right asymptote in Fig. 4. On the other hand, we
note that two patterns shown in Figs. 1 and 3 have dif-
ferent spatiotemporal symmetries, therefore due to topo-
logical reasons they cannot continuously transform into
each other. Similar bifurcation diagrams where parame-
ter ranges of two patterns with di�erent symmetries are
separated by heteroclinic or homoclinic bifurcations were
found for non-locally coupled Kuramoto-type phase os-
cillators [42] and seem to be a general mechanism which,
however, needs additional investigation.

E. Stability of breathing bumps

Given a T-periodic solution a(x; t ) of Eq. (4), we can
perform its linear stability analysis, using the approach
proposed in [39]. Before doing this, we write

Hn (z) = an C0 + 2Re[Dn (z)]

where

Dn (z) = an

nX

q=1

Cqzq;

to emphasise that Hn (z) is always real. Now, we in-
sert the ansatz z(x; t ) = a(x; t ) + v(x; t ) into Eq. (4)

(a)

0 5 10 15 20

FIG. 3. Another periodic solution of Eq. (4). (a):
arg (z(x; t )). (b): jz(x; t )j. Parameters: A = � 5, � 0 = � 2:5,
� = 1,  = 0 :01.

FIG. 4. Period of the type of solution shown in Fig. 3 as a
function of � 0 (solid curve). The circles show values measured
from direct simulations of Eq. (4). Other parameters: A =
� 5, � = 1,  = 0 :01.

and linearize the resulting equation with respect to small
perturbations v(x; t ). Thus, we obtain a linear integro-
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di�erential equation

@v
@t

= � (x; t )v + �
i (1 + a(x; t ))2

2
K

�
D 0

n (a)v + D 0
n (a)v

�
;

(17)
where

� (x; t ) = [ i (� 0 + � KHn (a)) �  ](1+ a(x; t ))+ i (1 � a(x; t ))
(18)

and

D 0
n (z) =

d
dz

Dn (z) = an

nX

q=1

qCqzq� 1:

Note that Eq. (17) coincides with the Eq. (5.1) from [40],
except that the coe�cients a(x; t ) and � (x; t ) are now
time-dependent. Since Eq. (17) contains the complex-
conjugated term v, it is convenient to consider this equa-
tion along with its complex-conjugate

@v
@t

= � (x; t )v � �
i (1 + a(x; t ))2

2
K

�
D 0

n (a)v + D 0
n (a)v

�
:

This pair of equations can be written in the operator
form

dV
dt

= A(t)V + B(t)V; (19)

where V (t) = ( v1(t); v2(t))T is a function with values in
Cper ([0; 2� ]; C2), and

A(t)V =

 
� (x; t ) 0

0 � (x; t )

!  
v1

v2

!

;

and

B(t)V =
i�
2

 
(1 + a(x; t ))2 0

0 � (1 + a(x; t ))2

!

�

0

@
K (D 0

n (a)v1)

K
�

D 0
n (a)v2

�

1

A : (20)

For every �xed t the operators A(t) and B(t) are lin-
ear operators fromCper ([0; 2� ]; C2) into itself. Moreover,
they both depend continuously ont and thus their norms
are uniformly bounded for all t 2 [0; T].

Recall that the question of linear stability of a(x; t ) in
Eq. (4) is equivalent to the question of linear stability
of the zero solution in Eq. (17), and hence to the ques-
tion of linear stability of the zero solution in Eq. (19).
Moreover, using the general theory of periodic di�eren-
tial equations in Banach spaces, see [13, Chapter V], the
last question can be reduced to the analysis of the spec-
trum of the monodromy operator E(T) de�ned by the
operator exponent

E(t) = exp
� Z t

0
(A (t0) + B(t0))dt0

�
:

The analysis of Eq. (19) in the case whenA(t) is a matrix
multiplication operator and B(t) is an integral operator
similar to (20) has been performed in [39, Section 4]. Re-
peating the same arguments we can demonstrate that the
spectrum of the monodromy operator E(T) is bounded
and symmetric with respect to the real axis of the com-
plex plane. Moreover, it consists of two qualitatively dif-
ferent parts:

(i) the essential spectrum, which is given by the for-
mula

� ess =

(

exp

 Z T

0
� (x; t )dt

!

: x 2 [0; 2� ]

)

[ f c:c:g

(21)
(ii) the discrete spectrum � disc that consists of �nitely

many isolated eigenvalues� , which can be found using
a characteristic integral equation, as explained in [39,
Section 4].

Note that if a(x; t ) is obtained by solving the self-
consistency equation (11) and hence it satis�es

a(x; t=! ) = U(x; t ) = U
�

W (x; t );
� 0 + i

2!
; !

�
;

where (W (x; t ); ! ) is a solution of Eq. (11), then we can
use Proposition 1 and formula (18) to show

�
�
�
�
�
exp

 Z T

0
� (x; t )dt

! �
�
�
�
�

< 1 for all x 2 [0; 2� ]:

In this case, the essential spectrum� ess lies in the open
unit disc D and therefore it cannot contribute to any
linear instability of the zero solution of Eq. (19).

To illustrate the usefulness of formula (21), in Fig. 5 (a)
we plot the essential spectrum for the periodic solution
shown in Fig. 1. In Fig. 5 (b) we show the Floquet multi-
pliers of the same periodic solution, where we have found
the solution and its stability in the conventional way, of
discretizing the domain and �nding a periodic solution
of a large set of coupled ordinary di�erential equations.
In panel (b) we see several real Floquet multipliers that
do not appear in panel (a); these are presumably part of
the discrete spectrum. Note that calculating the discrete
spectrum by the method of [39, Section 4] is numerically
di�cult, so we do not do that here.

F. Formula for �ring rates

One quantity of interest in a network of model neurons
such as (1) is their �ring rate. The �ring rate of the kth
neuron is de�ned by

f k =
1

2�

�
d� k

dtD
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FIG. 5. (a) The essential spectrum given by (21) for the pe-
riodic solution shown in Fig. 1. (b) Floquet multipliers of the
same periodic solution found using the technique explained at
the start of Sec. II. For both calculations the spatial domain
has been discretized using 512 evenly spaced points.

average �ring rate

f (x) =
1

# f k : jxk � xj < �=
p

N g

X

j x k � x j<�=
p

N

f k ; (22)

wherexk = 2 �k=N is the spatial positions of thekth neu-
ron and the averaging takes place over all neurons in the
(�=

p
N )-vicinity of the point x 2 [0; 2� ]. Note that while

the individual �ring rates f k are usually randomly dis-
tributed due to the randomness of the excitability param-
eters � k , the average �ring rate f (x) converges to a con-
tinuous (and even smooth) function for N ! 1 . More-
over, the exact prediction of the limit function f (x) can
be given, using only the corresponding solutionz(x; t ) of
Eq. (4). To show this, we write Eq. (1) as

d� k
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FIG. 6. Average �ring rate for a pattern like that shown in
Fig. 1. The curve shows f (x) as given by (26). The dots
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@u
@t

=
(i� u �  )(1 + u)2 � i (1 � u)2

2

+
i (1 + u)2

2
[weeKHn (u) � weiKHn (v)] ; (31)

@v
@t

=
(i� v �  )(1 + v)2 � i (1 � v)2

2

+
i (1 + v)2

2
[wieKHn (u) � wii KHn (v)] (32)

where u(x; t ) is the complex-valued order parameter for
the excitatory population and v(x; t ) is that for the in-
hibitory population. The non-negative connectivity ker-
nel between and within populations is the same:

K (x) =
1

2�
(1 + cos x)
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FIG. 9. Period, T , of a modulated travelling wave solution
of Eqs. (31){(32) as a function of heterogeneity strength � .
Circles are from direct simulation of Eqs. (31){(32). Other
parameters are as in Fig. 8.

The results of varying the heterogeneity strength� are
shown in Fig. 9. Increasing heterogeneity decreases the
period of oscillation, and eventually the travelling wave
appears to be destroyed in a saddle-node bifurcation.

We conclude this section by noting that for some pa-
rameter values the model (31){(32) can show periodic
solutions which do not travel, like those shown in Sec. II.
Likewise, the model in Sec. I can support travelling waves
for � = 2.

C. Winfree oscillators

One of the �rst models of interacting oscillators stud-
ied is the Winfree model [2, 19, 29, 46]. We consider a
spatially-extended network of Winfree oscillators whose
dynamics are given by

d� j

dt
= ! j + �

2�Q (� j )
N

NX

k=1

K jk P(� k )

where K jk = K (2� jj � kj=N) for some 2� -periodic
coupling function K , Q(� ) = � sin �=

p
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z = � 1 is not a �xed point of Eq. (42), we can always
chooset � 2 (0; 2� ) such that z� (t) 6= � 1 for t 2 [t � ; 2� ).
Then the Mean Value Theorem implies

0 � j z� (2� )j2 � j z� (t � )j2 = 2 �
djz� j2

dt
(t �� ) (44)

for some t �� 2 (t � ; 2� ). On the other hand, due to our
assumptions, we have

djz� j2

dt
= 2Re

�
c0(t)z� (t) + c1(t) + c2(t)z� (t)

�

� � 2c� Re (z� (t) + 1)

and therefore

djz� j2

dt
(t �� ) � � 2c� Re (z� (t �� ) + 1) < 0:

This is a contradiction to (44), which completes the
proof.

Remark 1 If the conditions of Proposition 2 are ful-
�lled, then the stable solution of Eq. (42) is also asymp-
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