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Abstract

We consider a pair of identical theta neurons in the active regime,
each coupled to the other via a delayed Dirac delta function. The net-
work can support periodic solutions and we concentrate on solutions
for which the neurons are half a period out of phase with one another,
and also solutions for which the neurons are perfectly synchronous.
The dynamics are analytically solvable, so we can derive explicit ex-
pressions for the existence and stability of both types of solutions. We
�nd two branches of solutions, connected by symmetry-broken solu-
tions which arise when the period of a solution as a function of delay
is at a maximum or a minimum. 2020 MSC codes: 92B20, 92B25,
34K24; keywords: neuron dynamics, delay di�erential equations, bi-
furcation.

1 Introduction

Many physical entities such as neurons and lasers can be modelled as os-
cillators [5, 19]. Coupling them together results in a network of coupled
oscillators. The e�ect of one oscillator on others in a network may be de-
layed due to, for example, the �nite speed of light, or of action potentials
propagating along axons [3, 5].

One of the simplest model oscillators is the theta neuron [4], which is the
normal form of the saddle-node-on-invariant-circle (SNIC) bifurcation [7]. A
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theta neuron has a single parameter, I, which can be chosen so that the neu-
ron is either excitable or active (periodically �ring). It has the advantage
that its state can be found explicitly as a function of time for constant I [14].
In a previous paper [14] we considered a single theta neuron with delayed
self-coupling (an autapse [21]) in the form of a Dirac delta function of time.
The action of a delta function on a theta neuron can be easily calculated, so
we were able to analytically describe periodic solutions of this model and de-
termine their stability, giving a complete description of the types of periodic
solutions, where they occur in parameter space and their stability.

More recently we considered a pair of theta neurons, each coupled to
the other through delayed delta functions [15]. We considered the case of
excitable neurons and found two types of periodic solutions: those for which
the neurons were perfectly synchronous, and those for which the neurons were
half a period out of phase with one another. Extending the analysis in [14]
we derived explicit expressions for the existence and stability of both types
of solutions. We also described symmetry-broken solutions and analytically
determined their stability. We found disconnected branches of solutions, all
of which lose stability when the period of a solution as a function of delay is
at a minimum.

This paper considers a pair of theta neurons, each coupled to the other
through delayed delta functions, but when the uncoupled neurons are active.
We perform similar analysis to that in [15], �nding two continuous branches
of periodic solutions, one for which the neurons are perfectly synchronous,
and one for which they alternate �ring. These branches undergo symmetry-
breaking bifurcations whenever the period as a function of delay is either a
maximum or a minimum. The model is presented in Sec. 2, synchronous
solutions are studied in Sec. 3, and alternating ones in Sec. 4. Symmetry-
broken solutions are studied in Sec. 5, we consider the case of smooth feedback
in Sec. 6 and conclude in Sec. 7.

2 Model

We �rst consider a single theta neuron [4] governed by

dθ

dt
= 1 − cos θ + (1 + cos θ)I, (1)

where θ ∈ [0, 2π) and I is a positive constant. The solution of (1) is

θ(t) = 2 tan−1

[√
I tan

(√
It + tan−1

(
tan[θ(0)/2]√

I

))]
. (2)
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In what follows we set I = 1, and thus a single theta neuron satis�es dθ/dt =
2 and thus θ(t) = θ(0)+2t. (While this may seem to be a drastic assumption,
if I ̸= 1 letting tan (θ/2) =

√
I tan (ϕ/2) we �nd that dϕ/dt = 2 [18].)

In this paper we consider a pair of such neurons coupled to one another
via delayed Dirac delta functions, described by

dθ1

dt
= 1 − cos θ1 + (1 + cos θ1)

(
1 + κ

∑
i:t−τ<si<t

δ(t − si − τ)

)
(3)

dθ2

dt
= 1 − cos θ2 + (1 + cos θ2)

(
1 + κ

∑
i:t−τ<ti<t

δ(t − ti − τ)

)
, (4)

where τ is the (constant) delay and �ring times in the past of neuron 1
can be written {. . . , t−3, t−2, t−1, t0} and those of neuron 2 can be written
{. . . , s−3, s−2, s−1, s0}. The constant κ is the strength of coupling between
the neurons. The inuence of the delta function is to increment θ using

tan (θ+/2) = tan (θ−/2) + κ, (5)

where θ−eTJ/FF83 7.9735(T6.401 T2 0 Td [(�)−14Tf 33.639 0 Td [(‘1tt778022)]TJ/F83 7du022)]TJe71.9552 T8−1. 10.525 0 Td [(using)]TJ −219.55 −26.401 Td [(tan)]TJ/F81 13layneuronfore1.9552 T8



Figure 1: Example periodic solutions of (3)-(4). The top row shows syn-
chronised solutions while the bottom shows alternating solutions. The left
column has κ = 2 while the right has κ = −1. All have τ = 2.

3.1 Existence

As shown in [14], perfectly synchronous periodic solutions of (3)-(4) with
period T satisfy

(n + 1)T = τ +
π

2
− tan−1

[
κ + tan

(
τ − nT +

π

2

)]
, (6)

where tan−1 is the arctangent function and n is the number of past �ring
times in the interval (−τ, 0), assuming that a neuron has just �red at time
t = 0. The primary branch of solutions, corresponding to n = 0, is given
explicitly by

T(τ) = τ +
π

2
− tan−1

[
κ + tan

(
τ +

π

2

)]
(7)

for 0 6 τ 6 π, while secondary branches are given parametrically, using the
reappearance of periodic solutions in delay di�erential equations with �xed
delays [25], as

(τ, T) = (s + nT(s), T(s)), (8)
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where 0 6 s 6 π. Several branches of such solutions are shown in blue in
Fig. 2.

3.2 Stability

We now derive the stability of a synchronous periodic solution. Suppose
neuron 1 last �red at time t0 and neuron 2 last �red at s0 where s0 ≈ t0.
The most distant past �ring of neuron 1 in (t0 − τ, t0) is t−n and the most
distant past �ring of neuron 2 in (s0 − τ, s0) is s−n.

For neuron 1, from t0 we wait τ−(t0 − s−n) at which point neuron 1 has
its phase incremented due to a past �ring of neuron 2. Before the reset, θ1

equals
θ−

1 = π + 2(τ − (t0 − s−n)),

and after reset it is θ+
1 where

tan (θ+
1 /2) = tan (θ−

1 /2) + κ.

Neuron 1 will then �re after a further time ∆1 where

∆1 =
π − θ+

1

2
.

Thus

t1 = t0 + τ − (t0 − s−n) + ∆1

= τ + s−n + π/2 − tan−1[κ + tan(π/2 + τ − (t0 − s−n))]. (9)

Similarly for neuron 2, from time s0 we wait τ − (s0 − t−n) until neuron
2 has its phase incremented as a result of the past �ring of neuron 1. Before
the reset θ2 equals

θ−
2 = π + 2(τ − (s0 − t−n)),

and after the reset it equals θ+
2 where

tan (θ+
2 /2) = tan (θ−

2 /2) + κ.

Neuron 2 will then �re after a further time ∆2 where

∆2 =
π − θ+

2

2
.

So

s1 = s0 + τ − (s0 − t−n) + ∆2

= τ + t−n + π/2 − tan−1[κ + tan(π/2 + τ − (s0 − t−n))]. (10)
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and since 0 < γ the only instability that can occur is when γ =



0

Figure 2: Blue: synchronous periodic solutions (solid stable, dashed unsta-
ble). The nth branch goes from (nπ, π) to ((n + 1)π, π). Red: alternating
periodic solutions (solid stable, dashed unstable). The nth branch goes from
((n − 1/2)π, π) to ((n + 1/2)π, π). Black: symmetry-broken periodic solu-
tions (all unstable, except the branch at τ = 0 which is neutrally stable).
The �lled circles indicate saddle-node bifurcations. κ = 2.

4.2 Stability

Performing a similar analysis as in Sec. 3.2 or [15] we obtain the �ring time
maps, valid when the oscillators are approximately half a period out of phase:

ti+1 = τ + si+1−n + π/2 − tan−1 [κ + tan (π/2 + τ − (ti − si+1−n))] (22)

si+1 = τ + ti−n + π/2 − tan−1 [κ + tan (π/2 + τ − (si − ti−n))] (23)

for i = 0, 1, 2, . . . .
We want to linearise around an alternating periodic solution of (22)-(23).

To do that, write (22)-(23) as

R(ti+1, si−n+1, ti) = 0 (24)

S(si+1, ti−n, si) = 0, (25)

then perturb the �ring times and assume that these perturbations either grow
or decay exponentially with index. The calculations are similar to those in
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Sec. 3.2 and we obtain the characteristic equation governing the stability of
these solutions:

Fb(λ) ≡ λ2n+1 − 2γλ2n + γ2λ2n−1 − (1 − γ)2 = 0, (26)

where

γ =
csc2 (τ − (n − 1/2)T)

1 + [κ − cot (τ − (n − 1/2)T)]2
. (27(
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Figure 3: Solutions of (30), describing symmetry-broken solutions, for κ =
4, 2, 1 (left to right).

of κ. When ϕ = 0 we have T = 2 cot−1 (κ/2). Thus the symmetry-broken
solutions lie on the lines T = 2τ/(2n + 1) where (2n + 1) cot−1 (κ/2) 6 τ 6
(n+ 1/2)π and are plotted in black in Fig. 2 emanating from each minimum
on the curve of synchronous solutions (shown in blue). They each terminate
at a maximum on the curve of alternating solutions (shown in red). Note
that only every second of the black curves shown in Fig. 2 are described by
this analysis; the other curves are analysed in Sec. 5.2. The stability of these
types of solutions can be calculated as in [15] and they are all unstable.

5.2 Symmetry-breaking from alternating solutions

5.2.1 τ = 0 solutions

We see from Fig. 2 that a symmetric alternating solution exists for τ = 0.
But a whole family of asymmetric solutions also exist, shown with the vertical
black line at τ = 0 in Fig. 2. We now analyse them.

Between �ring times the ow is given by dθ1/dt = 2 and dθ2/dt = 2.
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Assume that θ2 has just �red (i.e., θ2 = π) and θ1 = α where 0 < α < π.
Both θ1 and θ2 will increase until θ1 = π, which takes a time ∆1 = (π −
α)/2, at which point θ2 = 2π − α. The phase θ2 is then incremented to
θ+

2 = 2 tan−1 (κ + tan (π − α/2)). Both phases then continue to increase
until θ2 = π, which takes a further time ∆2 = (π − θ+

2 )/2, at which point
θ1 = π + 2∆2 = 2π − θ+

2 . The phase θ1 is then incremented to θ+
1 =

2 tan−1 (κ + tan (π − θ+
2 /2)). For this process to describe a periodic solution

we need θ+
1 = α, which is true for all 0 < α < π. (A similar calculation

can be done for π < α < 2π.) Thus there is a continuum of such periodic
solutions.

The period of such a solution is T = ∆1 + ∆2 and so we can write ∆1 =
(1/2 + ϕ)T and ∆2 = (1/2 − ϕ)T for some −1/2 < ϕ < 1/2, where ϕ = 0
corresponds to the symmetric alternating solution. We �nd that cot (∆1) =
tan (α/2) and cot (∆2) = κ − tan (α/2) and thus cot (∆2) = κ − cot (∆1), or

cot ((1/2 − ϕ)T) = κ − cot ((1/2 + ϕ)T), (31)

which is identical to (30), whose solutions are shown in Fig. 3. This family
of asymmetric solutions lie on the T axis with 2 cot−1 (κ/2) < T 6 π and are
shown in black in Fig. 2. These solutions are neutrally stable, as there is a
continuum of them.

5.2.2 τ > 0 solutions

The solutions in the previous section exist for τ = 0. Us 7.9798s in the previous section exist for



6 Smooth feedback

We now consider the case of smooth feedback, to see whether the results for
Dirac delta function coupling persist. The equations we study are

dθ1

dt
= 1 − cos θ1 + (1 + cos θ1) {1 + κP[θ2(t − τ)]} (32)

dθ2

dt
= 1 − cos θ2 + (1 + cos θ2) {1 + κP[θ1(t − τ)]} , (33)

where
P(θ) = am(1 − cos θ)m,

with am = 2m(m!)2/(2m)



Figure 4: Periodic solutions of (32)-(33). Blue: synchronous solutions; red:
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