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1 Introduction

Feedback
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& Maler, 1999), which combines
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Glass, 1997). Plant (1981) was a pioneer in this area, analyzing the dynamics
of the FitzHugh-Nagumo neuron model with delayed positive or negative
self-feedback. More recently, Giannakopoulos and Zapp (2001) considered
one inhibitory and one excitatory neuron, coupled to each other and them-
selves, with delay; from the point of view of the excitatory neuron, this
loop provides delayed inhibitory feedback. There have also been analyses
of delay-induced oscillations and frustrations in neural nets with delays
(Belair, Campbell, & van den Driessche, 1996), as well as of multistability in
nets with single delays (Foss, Longtin, Mensour, & Milton, 1996), multiple
delays (Shayer & Campbell, 2000) or multiple loops (Campbell 1999; Glass
& Malta, 1990). Traveling waves in pulse-coupled integrate-and-�re neu-
rons with delays have been found by Bressloff and Coombes (1999). The
same authors have also found that rhythmic bursting patterns can occur
in asymmetric networks of linear integrate-and-�re neurons with additive
synaptic inputs (i.e., without reversal potentials), when there was a mixture
of inhibitory and excitatory synaptic coupling (Bressloff & Coombes, 2000a).

Despite all these studies, delayed paired feedback, especially in the pres-
ence of noise, has not received much attention from the dynamical point of
view, even though it is frequently encountered (Crick & Koch, 1998; Mur-
phy et al., 1999; Berman & Maler, 1999; Hahnloser et al., 2000). Here we
combine both delayed feedback with the ability to change independently
the strengths of the excitatory and inhibitory components of the feedback in
the context of a neuron embedded in a network. These feedbacks can have
different properties, such as different strengths, integration and synaptic
timescales, and propagation delays. Recurrent excitation and inhibition,
and as we will see under certain conditions, mixed feedback are special
cases of this paired feedback.

Our article provides a general framework for analyzing paired feedback
with delays and noise due, for example, to synaptic activity. It reveals that as
a whole, the paired feedback loop forms a sophisticated computational unit
in comparisonwith a single neuron due to the wide variety of �
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model for the simplest
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between the loops (i.e., their relative strengths), regardless of the cause of
this balance, and as a function of the input (nonfeedback) bias current.

The neuron model we use at the core of the feedback loop is a leaky
integrate–and–�re neuron with reversal potentials whose governing equa-
tion is

C
dV
dt

D I C gL.VL ¡ V/ C ge.Ve ¡ V/ C gi.Vi ¡ V/ (2.1)

with reset and threshold values Vr and Vµ , respectively; that is, ifV.t¡/ D Vµ ,
then V.tC/ D Vr. C is the capacitance, I is the input current, and gL, ge, and
gi are the leak, excitatory, and inhibitory conductances, respectively. VL is
the leak potential, and Ve and Vi are the excitatory and inhibitory reversal
potentials, respectively. We assume that there is an absolute refractory pe-
riod ¿r—that V D Vr for a time ¿r after each �ring. The instantaneous �ring
rate of model 2.1 is

f .t/ ¼ H.Vss.t/ ¡ Vµ /

»
¿r ¡ C

gtot.t/
ln

µ
Vµ ¡ Vss.t/
Vr ¡ Vss.t/

¶¼ ¡1

; (2.2)

where H is the Heaviside function,

gtot.t/ D gL C ge.t/ C gi.t/ (2.3)

and

gtot.t/Vss.t/ D gLVL C ge.t/Ve C gi.t/Vi C I: (2.4)

This approximation for the �ring rate is due to the fact that an equality in
equation 2.2 is appropriate only if all quantities in equation 2.1 are constant
(apart from the voltage). Here, however, we assume that the conductances
ge and gi are functions of time, since they are affected by feedback activity
(see below). This activity is also assumed to vary on a timescale slower than
the membrane time constant in the leaky integrate-and-�re (LIF) model.
The timescale of the feedback activity is a function of both the response
properties of the population 2 cells (Pd



Dynamics of Paired Delayed Feedback 2785

To implement feedback in the model, equation 2.1, we assume that the
excitatory and inhibitory conductances depend on the �ring frequency of
the neuron at times in the past. Speci�cally, we write ge and gi as

ge.t/ D ¯e

Z t¡¿e

¡1
Gme

e .t ¡ s/ f .s/ ds (2.5)

gi.t/ D ¯i

Z t¡¿i

¡1
Gmi

i .t ¡ s/ f .s/ ds; (2.6)

where the feedback kernels Ge and Gi are described below. We are assuming
here a homogeneous population of neurons that communicate mainly via
feedback (directly or via another population), and the �ring function f .t/
drives this feedback activity. This function f can be seen as the population
instantaneous rate under asynchronous conditions, obtained by summing
all spike trains from all the cells. Since all cells are identical as a �rst ap-
proximation, they all receive the same time-dependent synaptic input, and
each of their behaviors is governed by equations 2.5 and 2.6 in conjunction
with equation 2.2. The feedback gains ¯e; ¯i account among other things for
the number of neurons summing their output. The �ring frequency, equa-
tion 2.2, is thus a good approximation to the population instantaneous rate
for slowly varying inputs.

The feedback kernels are chosen as

Gme
e .t/ D

(
ame C1

e
me!

.t ¡ ¿e/
me exp [¡ae.t ¡ ¿e/] if ¿e < t

0 if ¿e > t
(2.7)

and

Gmi
i .t/ D

(
amiC1

i
mi !

.t ¡ ¿i/
mi exp [¡ai.t ¡ ¿i/] if ¿i < t

0 if ¿i > t:
(2.8)

The function Gme
e .t/ is zero until time ¿e, after which it rises to a maximum

before decaying back to zero fromabove. ¿e (and also ¿i below) represents the
minimal delay for activity to propagate around the loop. This value can be
set to zero in our formalism,as is often done in modeling neural circuitryand
neural networks, but our analysis is valid for any (zero or positive) ¿e and
¿i. Note that the total mean delay is ¿e;i C .me;i C 1/=ae;i. Thus, ge.t/ is a scaled
convolution of the �ring frequency f .t/ in the past with the convolution
kernel Gme

e .t/. This convolution smoothes f .t/ and is meant to mimic the
effect of the output of the neuron exciting another cell or collection of cells,
which then project back in a paired fashion to the neuron under study. Note
that ge.t/ depends on f only at times earlier than t ¡ ¿e. Similar statements
hold for gi.t/. The coef�cients ¯e and ¯i are the nonnegative strengths of the
excitatory and inhibitory feedback, respectively. In practical situations, ¿i is
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if me > 1. This process can be repeated for yme¡2 and so on, and terminates
when me D 1. In this case, we have

y0.t/ D
Z t¡¿e

¡1
ae exp [¡ae.t ¡ s ¡ ¿e/] f .s/ ds; (2.17)

so that

dy0

dt
D ¡ae

Z t¡¿e

¡1
ae exp [¡ae.t ¡ s ¡ ¿e/] f .s/ ds C ae f .t ¡ ¿e/

D ae[ f .t ¡ ¿e/ ¡ y0.t/]: (2.18)

Thus, combining equations 2.13 and 2.16 for me > 1 and equation 2.18, we
have me C 1 equations:

dge

dt
D ae[¯eyme¡1 ¡ ge] (2.19)

dyme¡1

dt
D ae[yme¡2 ¡ yme¡1] (2.20)

:::

dy1

dt
D ae[y0 ¡ y1] (2.21)

dy0

dt
D ae[ f .t ¡ ¿e/ ¡ y0]; (2.22)

where, if not indicated, the variables on the right-hand sides are evaluated
at time t. A similar process can be undertaken for gi , resulting in a further
mi C 1 equations:

dgi

dt
D ai[¯izmi¡1 ¡ gi] (2.23)

dzmi¡1

dt
D ai[zmi¡2 ¡ zmi¡1] (2.24)

:::

dz1

dt
D ai[z0 ¡ z1] (2.25)

dz0

dt
D ai[ f .t ¡ ¿i/ ¡ z0]: (2.26)

Equations 2.5 and 2.6 are integral equations relating the conductances ge.t/
and gi.t/ to f .t/. Because of the form of Gme

e and Gmi
i , we have been able

to derive a set of equivalent delay differential equations that govern the
dynamics of ge.t/ and gi.t/. Recalling that f .t/ is a function of ge.t/ and gi.t/
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through equation 2.2, equations 2.19 through 2.26 form a closed system.
They will be a valid description of the dynamics of equations 2.1, 2.5, and
2.6, provided the spiking dynamics of the neuron occur on a fast timescale
relative to the timescale of the feedback delay and of the time evolution of
the conductances associated with the feedback activity.

One way to think of equations 2.19 through 2.22 is that y0 is a low–
pass �ltered version of f .t ¡ ¿e/, yi is a low–pass �ltered version of yi¡1 for
i D 1; : : : ; me ¡1, and ge is a low–pass �ltered version of yme¡1, with strength
¯e. The delayed quantity ge.t ¡ ¿e/ is then used in determining f .t ¡ ¿e/ via
equations 2.2 and 2.4. Equations 2.23 through 2.26 can be interpreted in a
similar way. We now
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Note that the �xed points
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D ¯e

¯i
[¯i f .ge.t ¡ ¿ /; gi.t ¡ ¿ // ¡ gi.t/] (4.6)

D ¯e f .ge.t ¡ ¿ /; gi.t ¡ ¿ // ¡ ge.t/; (4.7)

which is just equation 4.2. Thus when ¯i 6D 0, the attractor of the system 4.2
and 4.3 with paired feedback lies on the line ge D ¯egi=¯i and is governed
by the single delay differential equation,

dgi.t/
dt

D ¯i f .¯egi.t ¡ ¿ /=¯i; gi.t ¡ ¿ // ¡ gi.t/: (4.8)

If ¯i D 0, we have the single equation,

dge¯.

.¡tt.ieieit
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then all roots of equation 4.12 have negative real part, and the �xed point Og
of equation 4.9 is asymptotically stable.

By plotting ¯e f .g; 0/ as a function of g for various values
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of A at which pairs of roots of the characteristic equation 4.16 cross the
imaginary axis and acquire a positive real part. The crossing of the �rst
such pair brings on a Hopf bifurcation; the subsequent crossing of the other
pairs alters the shape of the oscillation of the �ring frequency: the closer the
real parts of the root pairs are, the more the oscillation resembles a square
wave. Similar behavior is seen in singularly perturbed delay-differential
equations (see, e.g., Mensour & Longtin, 1998). Accordingly, such solutions
can be quali�ed as bursting, since spikes occur in clusters separated by
periods of quiescence. It is important to realize that such bursting solutions
are due to the network, that is, to the feedback loop, since the core integrate-
and-�re neuron with reversal potentials cannot burst autonomously. If, for
large enough I, ¡1 < A < 0, the �xed point of equation 4.15 will be stable,
and as I is decreased, it will lose stability through the �rst of the Hopf
bifurcations.

To study Hopf bifurcations in equation 4.14, we substitute ¸ D i! into
equation 4.12, separate real and imaginary parts, and obtain the two equa-
tions

A cos .!¿ / D 1 (4.17)

and

A sin .!¿ / D ¡!: (4.18)

Note that for equation 4.17 to be satis�ed, we require 1 · jAj.
From equations 4.17 and 4.18, we have that

¿ D
cos¡1 .1=A/ C 2n¼p

A2 ¡ 1
(4.19)

at a Hopf bifurcation for some nonnegative integer n, and the frequency of
oscillation (at the bifurcation) is given by ! D

p
A2 ¡ 1. We claim that for

a �xed 0 < ¿ and any n 2 f0; 1; 2; : : :g, there is an A 2 .¡1; ¡1/ such that
equation 4.19 is satis�ed. To see this, note that equations 4.17 and 4.18 imply
that cos¡1 .1=A/ 2 .¼=2; ¼/.

.
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the maximum frequency during one oscillation tends to zero as I tends to
Ic from above and that this curve has in�nite slope at I D Ic. The actual
frequency of oscillations in gi also tends to zero as I tends to Ic from above,
and simulations suggest that the period of oscillation scales as ¡ log .I ¡ Ic/

as I tends to Ic from above (not shown). Both of these results are due to the
nonsmoothness of the �ring function f at I D Ic.

We note as well that the range of input current values over which the
unstable �xed point occurs (the dashed line in Figure
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Now the right-hand side (r.h.s.) of equation 5.7 is negative except when s is
zero, and thus trajectories approach the manifold on which s D 0. By consid-
ering the time evolution of .z0 ¡ y0/ and of .ge ¡ ¯egi=¯i/ from equation 5.1
through 5.4, it is clear that the manifold is invariant.

Note that if either ¯e or ¯i is zero, we only need consider half of the
variables.

The linearization of equations 5.5 and 5.6 about a �xed point is

dx1

dt
D ¯ix2 ¡ x1 (5.8)

dx2

dt
D [¯ed1=¯i C d2]x1.t ¡ ¿/ ¡ x2; (5.9)

where d1=2 is the derivative of f with respect to its �rst/second argument,
evaluated at the �xed point. Looking for solutions of the form [x1 x2]T D
Be¸t, where B 2 R2 and xT denotes the transpose of x, we �nd that ¸ satis�es

¸2 C 2¸ C 1 ¡ .¯ed1 C ¯id2/e¡¸¿ D 0: (5.10)

Note that this equation is still valid even if ¯i D 0, as an analysis of equa-
tions 5.1 through 5.4 shows. Equations such as 5.10 arise in the analysis of
linear oscillators with delayed feedback (Campbell, 1999; Stepán 1989).

De�ning A ´ ¯ed1 C ¯id2, we have a theorem regarding the roots of
equation 5.10:

Theorem 2. If either ¡1 < A < 1, or A < ¡1 and

¿ <
cos¡1 [.2 C A/=A]

p
¡A ¡ 1

; (5.11)

then all roots of equation 5.10 have negative real part.

Proof. When A D 0, the only roots of equation 5.10 are ¸ D ¡1, so the
corresponding �xed point of equations 5.5 and 5.6 is stable. The only way
the �xed point can become unstable is by ¸ crossing the imaginary axis.
Substituting ¸ D i! into equation 5.10, where ! is real, we have the equations

A cos .!¿ / D 1 ¡ !2 (5.12)

A sin .!¿ / D ¡2!: (5.13)

By squaring equations 5.12 and 5.13 and then adding them together, we
obtain

A2 D .1 C !2/2: (5.14)
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dz0

dt
D f .0; gi.t ¡ ¿ // ¡ z0: (5.19)

As argued in section 5.1, the �xed points are the same as for the m D 0
case; for each value of I, there is only one �xed point. Also, A < 0 if we are
above the �ring threshold, and so there cannot be any bifurcations at which
¸ D 0. If A < ¡1, it is possible to have a Hopf bifurcation. In fact, there is
an in�nite number of Hopf bifurcations as I decreases, just as there was for
m D 0, although the conditions for bifurcation are not the same.

Recall that at a Hopf bifurcation,

¿ D
cos¡1 [.2 C A/=A] C 2n¼p

¡A ¡ 1
(5.20)

for some nonnegative integer n.
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�xed amounts to a sharper localization in time of the delayed feedback.
The case m ! 1 corresponds to a delta function delay kernel. As in the
cases m D 0; 1, we have a theorem regarding the existence of an attracting
invariant manifold:

Theorem 3. If 1 < m and neither ¯e nor ¯i are zero, then there is an attracting
invariant manifold on which

[ge; ym¡1; : : : ; y0; gi; zm¡1; : : : ; z0]

D [¯egi=¯i; zm¡1; : : : ; z0; gi; zm¡1; : : : ; z0] (6.1)

that is, the excitatory dynamics are slaved to the inhibitory ones (assuming that
¯i 6D 0).

Proof. Similarly to theorem 1, de�ne

s ´ .1=¯2
e /.ge ¡ ¯egi=¯i/

2 C
m¡1X

iD0
.yi ¡ zi/

2:

We have

ds
dt

D .2=¯2
e /.ge ¡ ¯egi=¯i/[¯e.ym¡1 ¡ zm¡1/ ¡ .ge ¡ ¯egi=¯i/] (6.2)

¡2
m¡1X

iD0

.yi ¡ zi/
2 C 2

m¡1X

iD1

.yi ¡ zi/.yi¡1 ¡ zi¡1/; (6.3)

which can be rewritten as

ds
dt

D ¡.2=¯2
e /.ge ¡ ¯egi=¯i/

2 C .2=¯e/.ym¡1 ¡ zm¡1/.ge ¡ ¯egi=¯i/

¡ .ym¡1 ¡ zm¡1/2 (6.4)

¡
m¡1X

iD2

[.yi ¡ zi/
2 ¡ 2.yi ¡ zi/.yi¡1 ¡ zi¡1/ C .yi¡1 ¡ zi¡1/2] (6.5)

¡ [.y1 ¡ z1/2 ¡ 2.y1 ¡ z1/.y0 ¡ z0/ C 2.y0 ¡ z0/2]: (6.6)

Since 0 < ¯e, the right-hand side of equation 6.4 is negative when s 6D 0 and
zero otherwise. All terms within the square brackets in equation 6.5 are ei-
ther positive or zero, and the term within the square brackets in equation 6.6
is posi

� 720 1845 c]TJ˝1 0 1 0 0 1 1009 439 Tm˝[ s11 654Tm˝[ (.) ]TJ˝/F2 39 Tf˝39 TL˝1 0 6J˝1 0 1 0 0 1 1009 439 Tm˝[ s11 ˝1 0 6J˝1 0 1 0 0 1 1009 439 Tm˝[ s11 ˝147 ]TJ˝/F2 39˝1 0 0 1 1346 535 Tm˝[ (and) ]TJ1 Tm]TJ˝/F2 390 439 Tm˝[ s11 654Tm˝[ [ (X]TJ˝/F2 39(de) - 0 1 717 2253 Tm˝[ (0Tm]TJ˝/F2 39-25 (wise.) -0 0 1 700 1763 Tm˝[ m˝[]TJ˝/F2 39Al) -w) -230 () ] 1009.
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The excitatory dynamics are slaved to the inhibitory ones, whose dynam-
ics are given by

dgi

dt
D ¯izm¡1 ¡ gi (6.7)

dzm¡1

dt
D zm¡2 ¡ zm¡1 (6.8)

::: (6.9)
dz1

dt
D z0 ¡ z1 (6.10)

dz0

dt
D f .¯egi.t ¡ ¿ /=¯i; gi.t ¡ ¿ // ¡ z0; (6.11)

where, if an argument is not given, the quantity is evaluated at time t.
Performing the usual stability analysis, we �nd that if ¸ is an eigenvalue
associated with the linearization of equations 6.7 through 6.11 about a �xed
point, the determinant of the following matrix must be zero:

B ´

0

BBBBB@

¸ C 1 ¡¯i 0 ¢ ¢ ¢ ¢ ¢ ¢ 0
0
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Table 2: Bifurcation Conditions on ¿ and A.

m !2 ¿

0 A2 ¡ 1 f n
0 .A/ ´ fcos¡1.1=A/ C 2n¼ g=

p
A2 ¡ 1

1 ¡A ¡ 1 f n
1 .A/ ´ fcos¡1[.2 C A/=A] C 2n¼g=

p
¡A ¡ 1

2 3pA2 ¡ 1 f n
2 .A/ ´ fcos¡1[.4 ¡ 3 3pA2/=A] C 2n¼g=

p
3pA2 ¡ 1

3
p

¡A ¡ 1 f n
3 .A/ ´ fcos¡1[.8 ¡ 8

p
¡A ¡ A/=A] C 2n¼g=

pp
¡A ¡ 1

We can see that the only way the �xed point can lose stability as A is
decreased from 0 is through a Hopf bifurcation, and that this can occur
only for A < ¡1. Setting ¸ D i! in equation 6.12 and separating the real and
imaginary parts, we obtain the conditions in Table 2 for ¿ as a function of A at
such bifurcations. We have included the cases m D 0; 1 for comparison, and
also tabulate !2, where n 2 f0; 1; 2 : : :g. Entries for m > 3 are straightforward
but tedious to derive. In Figure 8, we plot f n

2 and f n
3 for n D 0; 1 and 2.

Interestingly, f 0
2 has a vertical asymptote at A D ¡8, and f 0

3 has a vertical
asymptote at A D ¡4. (It can be shown that these curves are not de�ned to
the left of their asymptotes, since we require both ¿ and ! to be positive.)

Because of the nesting of the curves
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decreased. Note that at such a Hopf bifurcation, the frequency of oscillation
is ! D ai

p
A2 ¡ 1, so changing ai will change the frequencies of oscillation.

In a similar way to that described in section 7.1, breaking the symmetry
of ai D ae breaks up the point .I; Á/ D .0:6; 0:8667/ in Figure 5 into a set of
lower codimension points. For the case ai D 5, ae D 1, ¿i D ¿e D 1, ¯ D 1,
Á D 0:88, a plot of frequency as a function of I is qualitatively the e () ]TJ˝1 0 0 1 1235 3757 Tm˝[ (D) ]25 (41 ]TJ˝1 0 0 1 1171 257 T057 (D) ]re) -282 () ]TJ˝1 0 0 1 244 2217 T057 (D) ]982 () ]TJ˝1 0 0 1 168 () ] T057 (D) ](n25 (t) -282 () ]TJ˝1 0 0 1 168 35 ] T057 (D) ]sh25 (wer) n (ti) )5 (wer)30 () ]TJ˝1 0 /F1Tf˝39 TL˝1 0 0 1 199 205712056 (D) ]7 (.) -335 (51 ]TJ˝1 0 0 1 290 209812056 (D) ]D25 (fu) 2 (.) -25 (r) 2e (r) -25 (y) 55 (nsi) 282 38 ]TJ˝1 0 0 1 118 405612056 (D) ]V)7 2 ]TJ˝1 0 0 1 447 205612056 (D) ]alu-230 35 ]TJ˝1 0 0 1 118 5m˝[12056 (D) ]-28235 ]TJ˝1 0 39 Tf˝39 TL˝1 0 0 1 659 2m˝[120˝[ (o) -mJ˝1 0 /F1Tf˝39 TL˝1 0 0 1 199 635612056 (D) ]TJ˝/F3 39 Tf˝39 TL˝1 0 0 1 802 664612056 (D) ]W
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points (not shown), we do not expect that any further breaking of symme-
tries (e.g., simultaneously having ¿i 6D ¿e and ai 6D ae) would introduce any
more novel behavior; rather, it would just move these points around in the
I; Á plane. These codimension 2 points could be analyzed in detail by lin-
earizing the appropriate systems about �xed points and investigating their
stability.

8 Stochastic Paired Delayed Feedback

The analysis until now has been in the deterministic case, where there is a
well-de�ned threshold for periodic �ring in equation 2.2. However, noise is
ubiquitous in neural systems, mainly as a result of the probabilistic nature of
synaptic transmission (Koch, 1999). It is well known that including stochas-
tic effects in single-neuron models “smoothes out” the abrupt change in
slope of the frequency versus input current relationship that is seen in type
I neurons (Hohn & Burkitt, 2001; Lansky & Sacerdote, 2001), of which the
integrate–and–�re neuron we have studied is an example. How does this
smoothing change the dynamics of the neuron with paired delayed feedback
described up to now? This is a very broad and dif�cult question, especially
since there are a number of ways to include noise such as synaptic noise
in neuron models, and there are very few results in the literature on noise-
driven systems with memory. The main dif�culty in analyzing such systems
stems from the non-Markovian nature of the problem, which precludes the
use of standard tools such as Fokker-Planck analysis and the (related) �rst
passage time to threshold calculations (Guillouzic, L’Heureux, & Longtin,
2000).

In this section, we approach this problem in a simple way, in the hope
that the results will capture the essential effects of noise and, in particu-
lar, its smoothing of the �ring function. We investigate the effects of noise
of the leaky integrate-and-�re neuron with delayed feedback under study
up to now by adding a stochastic term, ¾ ».t/, to equation 2.1, where ».t/
is gaussian white noise with zero mean and variance 1. The parameter ¾

adjusts the noise intensity. The �ring rate of the neuron 2.1 is now given by
(Ricciardi, 1977; Wang, 1999)

f D
Á

¿r C
p

¼b¿

¿
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and the error function is de�ned as erf.x/ D 2
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8.1 Numerical Implementation. We brie�y discuss the
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8.4 Paired Feedback. When noise is added to the system, the point at
.I; Á/ D .0:6; 0:8667/ in �gure 5 breaks up. For small noise intensity, the
curve of Hopf bifurcations in that �gure, together with the line I D 0:6 for
0 < Á < 0:8667, forms a \-shaped curve, emanating from the I-axis. The
Hopf bifurcation on the right side of this curve may be subcritical over some
of its extent, depending on the values of ¾ and ¯ (not shown).

The curve of saddle–node bifurcations of�xedpoints inFigure 5, together
with the line I D 0:6 for 0:8667 < Á < 1, form a cusp emanating from the line
Á D 1. Thus, when ¾ 6D 0, there is an interval of Á values (rather than just
one value, as was the case for ¾ D 0) over which the feedback is “balanced,”
in the sense that it causes neither bistability not oscillations in frequency.

8.5 General Remarks. Adding noise does not destroy the chaotic behav-
ior shown in section 4.3.1 (results not shown). This is to be expected, since
the unimodal function shown in Figure 6 will not be destroyed by noise,
merely smoothed out and shifted a little. In general, the effect of noise is
to smooth out the discontinuity in the derivative of the �ring function f
and to put an upper bound on the absolute value of the derivative of this
function. The effects of this on the existence and stability of �xed
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potentials. Thus, the model properly treats the inherent time-dependent
variations of the membrane time constant.

The model is also realistic in that it takes into account a possible minimal
delay for the feedback, as well as the distribution of delays added to this
minimal delay. This distribution characterizes the temporal spread of the
feedback, that is, the distributed memory in the neural loop. The kernels
for both feedback pathways can be used to model either direct feedback
of the neuron onto itself or, alternately, feedback via one or more other
neuron populations. Physiological data can then be used to �t the delay
distributions and the feedback strengths (see, e.g., Mackey & an der Heiden,
1982; Berman & Maler, 1999; Eurich et al., 2002) and incorporate them into
the model.

For excitatory feedback alone, our analysis revealed that the system can
be quiescent, or �re periodically, or exhibit bistability between these two
states. Inhibition alone produces quiescence, oscillatory�ring rates, orbista-
bility between constant and oscillatory �ring-rate solutions. This means, for
example, that an external input from, say, an afferent pathway can toggle
the neural loop between periodic �ring at a constant frequency and an os-
cillatory �ring rate. Under certain conditions, this rate
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deterministic �ring function. We �nd here that the smoothing provided by
the noise removes the degeneracy in the deterministic function at �ring
threshold, where the function is not differentiable. Adding noise puts an
upper bound on the absolute value of the slope of this function, affecting
the stability of �xed points of the system.

Signi�cant dynamical differences arise as the in�nite slope of the �ring
function at oscillation onset becomes �nite, and the oscillation onset itself
is smoothed out by the noise. For example, the oscillation in the �ring rate
at the onset of �ring in the inhibitory case gives way to a constant �ring
rate if noise is assumed (see Figure 11). Also, the noise can decrease and
even annihilate the range of input currents where bistability occurs in the
excitatory case.
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