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Abstract We consider the e�ects of correlations be-

tween the in- and out-degrees of individual neurons on

the dynamics of a network of neurons. By using theta

neurons, we can derive a set of coupled di�erential equa-

tions for the expected dynamics of neurons with the

same in-degree. A Gaussian copula is used to introduce

correlations between a neuron’s in- and out-degree and

numerical bifurcation analysis is used determine the ef-

fects of these correlations on the network’s dynamics.

For excitatory coupling we �nd that inducing positive

correlations has a similar e�ect to increasing the cou-

pling strength between neurons, while for inhibitory

coupling it has the opposite e�ect. We also determine

the propensity of various two- and three-neuron motifs

to occur as correlations are varied and give a plausible
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relations. They showed that once correlations were in-

cluded, the dynamics are e�ectively four-dimensional,

in contrast to the two-dimensional dynamics expected

from a standard rate-based excitatory/inhibitory net-

work. They also related the degree distributions to cor-

tical motifs. Experimental evidence for within-neuron

degree correlations is given in [31].

The structure of the paper is as follows. In Sec. 2

we present the model network and summarise the anal-

ysis of [1] showing that under certain assumptions, the

network can be described by a coupled set of ordinary

di�erential equations, one for the dynamics associated

with each distinct in-degree. In Sec. 3 we discuss how to

generate correlated in- and out-degrees using a Gaus-

sian copula. Our model involves sums over all distinct

in-degrees, and in Sec. 4 we present a computation-

ally e�cient method for evaluating these sums, in anal-

ogy with Gaussian quadrature. Our main results are

in Sec. 5 and we show in Sec. 6 that they also occur

in networks of more realistic Morris-Lecar spiking neu-

rons. We discuss motifs in Sec. 7 and conclude in Sec. 8.

2 Model

We consider the same model of pulse-coupled theta neu-

rons as in [1]. The governing equations are

d�i
dt

= 1� cos �i + (1 + cos �i)(�i + Ii) (1)

for i = 1; 2 : : : N , where the phase angle �i characterises

the state of neuron i, which �res an action potential as

�i increases through �,

Ii =
K

hki

NX
j=1

AijPn(�j); (2)

K is the strength of connections within the network,

Aij = 1 if there is a connection from neuron j to neu-

ron i and Aij = 0 otherwise, hki is the average de-

gree,
P
i;j Aij=N , and Pn(�) = an(1 � cos �)n where

an is chosen such that
R 2�

0
Pn(�)d� = 1. The function

Pn(�j) models the pulse of current emitted by neuron

j when it �res and can be made arbitrarily \spike-like"

and localised around �j = � by increasing n. The pa-

rameter �i is the input current to neuron i in the ab-

sence of coupling and the �i are independently and ran-

domly chosen from a Lorentzian distribution

g(�) =
�=�

(� � �0)2 +�2
(3)

Chandra et al. [1] considered the limit of large N and

assumed that the network can be characterised by two

functions. Firstly a degree distribution P (k), normalised

so that
P

k P (k) = N , where k = (kin; kout) and kin
and kout are the in- and out-degrees, respectively of a

neuron with degree k. Secondly, an assortativity func-

tion a(k0 ! k) giving the probability of a connection

from a neuron with degree k0 to one with degree k,

given that such neurons exist. Whereas [1] investigated

the e�ects of varying a(k0 ! k), here we consider the

default value for this function (i.e. its value expected by

chance, see (11)) and investigate the e�ects of varying

correlations between kin and kout as speci�ed by the

degree distribution P (k



The e�ects of within-neuron degree correlations in networks of spiking neurons 3

can be regarded as a complex-valued \order parame-

ter" for neurons with degree k at time t. The function

G(k0; t) can be regarded as the output current from neu-

rons with degree k0, and its form results from rewriting

the pulse function Pn(�) in terms of b(k0; t). [For general

n, G(k0; t) is the sum of a degree-n polynomial in b(k0; t)

and one in �d [(k)]TJ/F13 6.9738 Tf 6.047 3.616 Td [(0)]TJ/F11 9.9626 Tf 2.795 -3.616 Td [(;)-167(t)]TJ/F8 9.9848G
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human brain is given in [4], for example.) So the prob-

ability distribution function of either in- or out-degree

k is

p(k) =

(�
2a2b2

b2�a2

�
k�3 a � k � b

0 otherwise
(16)

where the normalisation factor results from approxi-

mating the sum from a to b by an integral. (The ap-

proximation improves as a and b are both increased.)

We want to introduce correlations between the in- and

out-degree of a neuron, while retaining these marginal

distributions. We do this using a Gaussian copula [18].

The correlated bivariate normal distribution with zero

mean is

f(x; y; �̂) =
1

2�
p
j�j

e�(xT��1x)=2

=
1

2�
p

1� �̂2
e�(x2�2�̂xy+y2)=[2(1��̂2)] (17)

where

x �
�
x

y

�
� =

�
1 �̂

�̂ 1

�
(18)

and �̂ 2 (�1; 1) is the correlation between x and y.

The variables x and y have no physical meaning and

we use the copula just as a way of deriving an analytic

expression for P (k0in; k
0
out; �̂) for which the correlations

between k0in and k0out can be varied systematically.

The marginal distributions for x and y are the same:

~p(x) =
1p
2�
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In practice, to �nd the roots of qn we use the Golub-

Welsch algorithm. Form the tridiagonal matrix

J =

0BBBBBB@

�
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where

m1(V ) = 0:5(1 + tanh [(V � V1)=V2]) (47)

w1(V ) = 0:5(1 + tanh [(V � V3)=V4]) (48)

�n(V ) =
1

cosh [(V � V3)=(2V4)]
(49)

Parameters are V1 = �1:2; V2 = 18; V3 = 12; V4 =

17:4; �0 = 1=15msec�1; gL = 2; gK = 8; gCa = 4; VL =

�60; VCa = 120; VK = �80; C = 20�F=cm2; � = 100; Vex =

120; � = 5mS=cm2. Voltages are in mV, conductances

are in mS/cm2, time is measured in milliseconds, and

currents in �A=cm2. In the absence of coupling and

heterogeneity a neuron undergoes a SNIC bifurcation

as I0 is increased through � 40. We have used synap-

tic coupling of the form in [6], but on a timescale �

rather than instantaneous as in that paper. The Ii are

randomly chosen from a Lorentzian distribution with

mean zero and half-width at half-maximum 0:05.

The network is created as follows, using the Gaus-

sian copula of Sec. 3. For each i 2 f1; : : : Ng let x1

and x2 be independently chosen from a unit normal

distribution. Then x1 and y1 = �̂x1 +
p

1� �̂2x2 both

have unit normal distributions and covariance �̂, i.e. are

realisations of x and
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motif statistics and �ring rate, as observed here, seems

yet to be developed.

We chose a Lorentzian distribution of the �i in (1),

as many others have done [22], in order to analytically

evaluate an integral and derive (6). However, we re-

peated the calculations shown in Figs. 5, 7, 9 and 10

using a Gaussian distribution of the �i and found the

same qualitative behaviour (not shown). Regarding the

parameter n governing the sharpness of the function

Pn(�), we repeated the calculations shown in Figs. 5

and 7 for n = 5;1 and obtained qualitatively the same

results (not shown). We used a Gaussian copula to cor-

relate in- and out-degrees due to its analytical form, but

numerically investigated the scenarios shown in Figs. 5

and 7 for t copulas and Archimedean Clayton, Frank

and Gumbel copulas and found the same qualitative

behaviour (also not shown).

For simplicity we used the same truncated power

law distribution for both in- and out-degrees. However,

the use of a Gaussian copula for inducing correlations

between degrees does not require them to be the same,

so one could use the framework presented here to in-

vestigate the e�ects of varying degree distributions [26],

correlated or not.

We also only considered either excitatory or inhibit-

ory networks, but it would be straightforward to gener-

alise the techniques used here to the case of both types

of neuron, with within-neuron degree correlations for

either or both populations, though at the expense of

increasing the number of parameters to investigate.
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