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We present a two-variable delay-differential-equation model of a pyramidal cell
from the electrosensory lateral line lobe of a weakly electric fish that is capable
of burst discharge. It is a simplification of a six-dimensional ordinary differen-
tial equation model for such a cell whose bifurcation structure has been analyzed
(Doiron et al., J. Comput. Neurosci., 12, 2002). We have modeled the effects of
back-propagating action potentials by a delay, and use an integrate-and-fire mech-
anism for action potential generation. The simplicity of the model presented here
allows one to explicitly derive a two-dimensional map for successive interspike
intervals, and to analytically investigate the effects of time-dependent forcing on
such a model neuron. Some of the effects discussed include ‘burst excitability’,
the creation of resonance tongues under periodic forcing, and stochastic resonance.
We also investigate the effects of changing the parameters of the model.

c© 2002 Society for Mathematical Biology. Published by Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

Bursting, in which a cell periodically switches from quiescent behavior to a
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Recently, a new mechanism for burst discharge in pyramidal cells of the weakly
electric fishApteronotus leptorhynchuswas investigated (Doiron et al., 2002).
These cells receive input directly from electroreceptor cells on the fish’s skin, and
are thought to play a significant role in the processing of electrosensory infor-
mation. The model presented inDoiron et al. (2002) was a set of six coupled
nonlinear first-order ordinary differential equations, which was a reduction from
the multicompartment model involving over 1500 variables presented inDoiron
et al. (2001a). This reduction was obtained by lumping the many compartments
into two, representing the soma and the dendrite, and by ignoring the dynamics of
the channels not thought to be important in the mechanism for bursting. That the
model inDoiron et al. (2002) reproduced both the bursting behavior observed in
the model ofDoironet al. (2001a) and experimentally observed bursts (Lemon and
Turner, 2000) indicates that this process was successful.

The model analyzed inDoiron et al. (2002) was studied using the ‘slow–fast’
approach of others (Rinzel and Ermentrout, 1998; Izhikevich, 2000), but it differed
from all previous bursting models in that when the one slow variable was held
constant, the remaining ‘fast’ system did not show bistability for any values of the
slow variable. The bifurcation in the fast system that ended a burst was found to
be a transition from period-one to period-two behavior associated with the failure
of a somatic action potential to induce a dendritic one, and the interburst interval
was found to involve the passage in phase space near a fixed point. Several aspects
of the timing of bursts were found to be related to the distance in parameter space
from a saddle–node bifurcation, hence the name ‘ghostbursting’ (Strogatz, 1994).

In this paper we further reduce the model inDoiron et al. (2002) to a set of
two discontinuous delay differential equations, from which a two-dimensional map
can be derived (assuming constant input current). This gives us analytical insight
into complex soma–dendrite interactions, and is computationally much easier to
study than an ODE model. The reduced model presented here can be constructed
because, as a result of the work inDoironet al. (2002), we understand the essential
ingredients of this type of bursting (refer to Fig.1). A short time after most somatic
spikes, current flows from the dendrite to the soma, producing a depolarizing after-
potential (DAP) at the soma. For large enough current injected to the soma, the
sizes of these DAPs slowly increase due to a slow inactivation of the dendritic
potassium that is responsible for the repolarization of dendritic action potentials.
This results in progressively smaller inter-spike intervals (ISIs), and this process
continues until an ISI is smaller than the refractory period of the dendrite. Once
this happens, there is dendritic spike failure, which removes the normal current
flow to the soma, and a DAP does not appear. This results in a long ISI, during
which the variable controlling inactivation of dendritic potassium increases, and
the sequence starts again. In Fig.1 we show typical bursting behavior from the
model inDoiron et al. (2002). The spike patterning is similar to that seen in the
multicompartment model inDoiron et al. (2001a) and in experimental recordings
(Lemon and Turner, 2000).
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Figure 1. An example of bursting for the 6-variable ODE model ofDoiron et al. (2002).
Top: somatic voltage, middle: dendritic voltage, bottom: dendritic potassium inactivation.
Bursts terminate att
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In this paper we also consider periodically modulating the current applied to
the model neuron, and for the case of sinusoidal modulation we obtain a three-
dimensional map for successive spike times. This map can be used to determine the
boundaries in parameter space of resonance tongues, in which the neuron’s firing
frequency is locked to that of the forcing. This map is able to explain some of
the behavior seen inLaing (2002), in which bursting models [including the one in
Doironet al. (2002)] are periodically forced. For example, when only a DC current

is injected into the model neuron ofDoironet al. (2002), there is a value of current
at which the neuron switches from tonic to bursting behavior. However, adding a
sinusoidal modulation to the injected current can either increase or decrease the DC
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2. THE M ODEL

We use an integrate-and-fire neuron (Keeneret al., 1981) to produce somatic
action potentials (‘spikes’), and couple this with another variable,c, whose behav-
ior mimics the effects of inactivation of dendritic potassium in the model ofDoiron
et al. (2002) [althoughc increases during a burst, while the actual inactivation gat-
ing variable decreases inDoironet al. (2002) (see Fig.1); both trends have the same
effect in their respective models]. The effective delay between a somatic spike and
the appearance of a DAP [a result of the diffusive coupling in voltage between
soma and dendrite inDoironet al. (2002)] is mimicked by an actual delay, and the
effect of the DAP is mimicked by an instantaneous increase in the neuron’s voltage.

The equations are

dV

dt
= I − V + Ac

∑
n

H(tn − tn−1 − r )δ(t − tn − σ) (1)

dc

dt
= −c/τ + (B + Cc2)

∑
n

δ(t − tn) (2)

with the ruleV(t+

n ) = 0 if V(t−

n ) = 1, and thetn are the times at which the
reset occurs (n is an integer).V represents the somatic membrane potential,I is
the current injected to the soma,H(·) is the Heaviside function,r represents the
refractory period of the dendrite,σ is the effective delay between the somatic action
potential and the dendritic-to-somatic current that causes the DAP, andA, B, C and
τ are constants. The action potentials are thought of as occurring at the timestn.

At almost all times,V exponentially approachesI from below with time-constant
1, andc exponentially decays towards 0 with time-constantτ . At each firing time
tn, c is incremented:c 7→ c + B + Cc2. At a timeσ after firing, and assuming that
the previous ISI,tn − tn−1, is greater than the refractory periodr , V is incremented:
V 7→ V + Ac, wherec is evaluated at a timeσ after firing. If the previous ISI is
less than the refractory period,V is not incremented. Note that the neuron will not
fire if I is always less than 1.

An example of the behavior of (1), (2) is shown in Fig.2. Note the increase
in the overall level ofc and the decrease of ISIs during the burst, and the long
ISI separating bursts. This long ISI is a result of the previous ISI being less than
the refractory period of the dendrite of the neuron, so that no current propagates
from the dendrite to the soma during this ISI. This long ISI can also be seen as the
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Figure 2. Voltage (top) andc (bottom), the variable representing the amount of feed-
back from the dendrite to the soma, as functions of time, illustrating the bursting behavior
of (1), (2). Parameters areI = 1.3, A = 2.3, B = 0.15,C = 2, r = 0.7, σ = 0.4, τ = 1.

models for other types of neurons, provided the interactions between the soma and
dendrites are understood.
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Figure 3. Instantaneous frequency (reciprocal of ISI) as a function of input current,I , for
the map (7), (8
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1n+1 in this situation may cause the values ofci to increase without bound, an
unphysical situation. Note that we must haveσ < r .

The instantaneous frequency, i.e., 1/1n, is shown as a function ofI in Fig. 3 for
a particular set of parameter values (transients have been removed). A number of
observations can be made:

1. During periodic firing for 1< I <∼ 1.22, case(i i ) in (7) will always be
true. For periodic firing,cn+1 = cn, and thus (8) is a quadratic incn. It can
therefore be solved forcn in terms of the steady-state period,1 (the negative
square root must be chosen). Substituting this into case(i i ) in (7), we obtain
an equation that1 must satisfy:

(1 − I )e−σ e1
=

Ae−σ/τ
[
1 − e−1/τ

−
√

1 − 2e−1/τ + (1 − 4BC)e−21/τ
]

2Ce−21/τ

− I e−σ . (9)

For 1< I <∼ 1.22, equation (9) has two solutions, the larger one of which
is stable (and can be seen in Fig.3; the unstable solution is not shown). The
two solutions coalesce in a saddle–node bifurcation (Kuznetsov, 1995) at
I ∼ 1.22. Note that in (1), (2), this is a saddle–node bifurcation of periodic
orbits. Interestingly, it was a saddle–node bifurcation of periodic orbits that
separated periodic from bursting behavior in the full ionic ODE model in
Doiron et al. (2002). As I → 1 from above, the largest root of (9) tends to
∞, corresponding to the frequency tending to zero. Note that ifτ = 1, (9) is
independent ofσ .

2. For I greater than∼1.22, the smallest instantaneous frequency occurs bet-
ween bursts, where the only current driving the neuron during its entire
period is I . Thus the lower curve in Fig.3 for I greater than∼1.22 is just
1 = ln [I /(I − 1)] [case(i i i ) in (7)].

3. For I greater than∼1.22, the ‘band’ of frequencies in Fig.3 not including
the interburst interval is bounded below by the curve

1 = σ + ln

(
ABe−σ/τ

− I e−σ

1 − I

)
(10)

sincecn has a minimum value ofB after being reset at the end of the inter-
burst interval. [Expression (10) is obtained by settingcn = B in (7) (i i )
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In relation to point 1 earlier, if the positive square root is taken instead and sub-
stituted into case(i i ) in (7), the roots of the resulting function may not satisfy the
condition1 > r associated with case(i i ), and thus they will not be actual fixed
points of the map. Also, the fact that (8) can be solved explicitly for the steady-state
value ofc is a result of our choice of the dynamics ofc, (2). Replacing the term
Cc2 in (2) by Cc would mean that the equation for the steady state ofc was linear
and thus had only one solution; this choice would also simplify the expression (9),
but would make chaotic behavior more difficult, although not impossible, to obtain
(see later).

2.2. Lyapunov exponent.The Lyapunov exponents of a trajectory determine its
stability and the behavior of nearby trajectories. If a stable solution has at least one
positive Lyapunov exponent, the system will exhibit sensitivity to initial conditions,
and nearby trajectories will typically separate exponentially in time (Drazin, 1992).
For a range of current values, the bursting behavior inDoiron et al. (2002) was
shown to have a positive Lyapunov exponent, and thus be chaotic.

To find the maximal Lyapunov exponent,λ, for a trajectory of the map (7), (8),
we analytically calculate the Jacobian,D f , of (7), (8) and evaluate it at each point
on the orbit,x1, x2, . . . , wherexi = (1i , ci ) ∈ R2. If qi is the largest magnitude
eigenvalue ofD f (xi ) thenλ can be calculated (Drazin, 1992) from

λ = lim
n→∞

1

n

n∑
i =1

ln |qi |. (11)

This quantity is shown in Fig.4, multiplied by four for clarity, together with instan-
taneous frequency. Note the transition from period-1 firing to chaotic bursting at
I ∼ 1.22, and the long-period quasiperiodic behavior forI greater than∼1.32.

2.3. Effects of parameters.The model (1), (2) has six parameters that are regar-
ded as constant (A, r, σ, τ, B andC). We now briefly discuss the effects of chang-
ing each of these. In more realistic models (Doiron et al., 2001a, 2002), changing
parameters can mimic the application of drugs that selectively block various ionic
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grow extremely quickly. This leads to ‘doublet’ firing inV and an eventual
breakdown of the algorithm.

• For the parameters used, ifτ > 1, increasingσ makes the neuron more likely
to burst and vice versa. Ifτ < 1, increasingσ makes the neuron less likely
to burst, and vice versa. This can be understood graphically by writing (9)
as

e−σ f (1) = Ae−σ/τ g(1, τ) (12)

where

f (1) = I + (1 − I )e1 (13)

and

g(1, τ) =
1 − e−1/τ

−
√

1 − 2e−1/τ + (1 − 4BC)e−21/τ

2Ce−21/τ
. (14)

For a givenτ and other parameters in the appropriate range,f (1) is a
concave-down function of1, andg(1, τ) is a concave-up function of1.
They are both positive in the region of interest. The intersections of the left
and right sides of (12) give the values of1 at the two periodic orbits (one
stable and the other unstable) of (1), (2). It is the coalescence of these in a
saddle–node bifurcation that marks the transition from periodic to bursting
behavior.
If τ > 1, increasingσ decreases the left-hand side of (12) more than it
decreases the right-hand side, bringing the two points of intersection closer
to one another, and thus lowering the value ofI at which the saddle–node
bifurcation occurs. Conversely, ifτ < 1, increasingσ decreases the right-
hand side of (12
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without having to simulate those more detailed models. To determine these rela-
tionships, one would need to know the effects of changing a particular parameter
in a large model on one or more of the six parameters discussed earlier.

As an example, it was found inDoironet al. (2002) that decreasing the maximum
conductance of the dendritic potassium decreased the value of current injected to
the soma at which the cell switched from tonic to bursting, i.e., it made the cell
more likely to burst. This is easy to understand, since it is dendritic potassium that
is responsible for repolarizing the dendrite, and by lessening its effect the dendritic
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Figure 5. Burst excitability for the system (1), (2). I was set to 1.5 for 4 < t < 4.8 for the
top two panels, and 1.45 for 4 < t < 4.8 for the bottom two panels.I = 1.21 otherwise.
In the top two panels a burst is induced, and in the lower two no burst is induced. Note that
there is no bistability in the system, and that the slow recovery after the perturbations is due
to the system being pushed close to an unstable periodic orbit. Parameters areA = 2.3,
B = 0.15,C = 2, r = 0.6, σ = 0.4, τ = 1.

that ‘slow’ behavior in a bursting system does not necessarily imply the existence
of a slow time-scale in the form of an explicit long time-constant, but can be the
result of the system’s trajectory in phase space passing close to the stable manifold
of an unstable object (e.g., a fixed point or periodic orbit).

This form of burst excitability has been seen in the model presented inDoiron
et al. (2002). Since the pyramidal cells we are modeling receive sensory input
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directly from electroreceptors on the fish’s skin (Nelsonet al., 1997; Chacronet al.,
2001
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Figure 6. The curve of saddle–node bifurcations of periodic orbits (solid) and the threshold
for firing (dashed), as a function ofB. Other parameters are the same as in Fig.3. The two
curves meet at a codimension-two point, marked with a circle. The labels refer to the types
of behavior that occur within each region of parameter space.

is within the refractory period of the dendrite, so no DAP arrives after it and a long
ISI is produced (long becauseI is close to 1).

It is possible that the bursts produced by these cells are of most interest, rather
than the individual spikes within them (Lisman, 1997). Thus being able to change
both the number of spikes in a burst and the length of the interburst interval, as we
have just done, may be very important with respect to changing the information
content of the output of such a cell (Doironet al., 2002).

One difference between the model (1), (2) and the ODE model ofDoiron et al.
(2002) involves the scaling of the interburst intervals asI decreases. The bifurca-
tion separating quiescence from periodic firing inDoironet al. (2002) is a saddle–
node-on-a-circle bifurcation (Kuznetsov, 1995), and hence the period of periodic
firing scales asT ∼ 1/

√
I − I ∗, where I ∗ is the value of the current at which

the transition takes place. This is in contrast with the1 = ln [I /(I − 1)] expres-
sion for the integrate-and-fire mechanism that we are using in (1), (2) to produce
action potentials. Thus in the interburst intervals, where there is essentially no
current flowing from the dendrite to the soma and the soma is driven by only the
current injected into it from the outside, the length of the interburst intervals will
scale differently with current for the two models. However, both scalings give the
same qualitative result, i.e.,T → ∞ as I → I ∗ from above, and1 → ∞ as
I → 1 from above. The scaling in (1), (2) could be made to match the scaling in
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Figure 7. Example bursts of (1), (2) for three different(I , B) pairs. Top: (I , B) =

(1.23, 0.15), middle: (I , B) = (1.007, 0.37), bottom: (I , B) = (1.007, 0.5). See Fig.6.
Other parameters are the same as in Fig.3. Note that the horizontal axes all have the
same scale.

Doironet al. (2002) if the spike-producing neuron was one whose bifurcation sep-
arating quiescence from periodic firing was a saddle–node-on-a-circle bifurcation;
one example is the ‘theta neuron’ (Gutkin and Ermentrout, 1998), but its nonlin-
earity would complicate analysis of the resulting bursting model.

3. SINUSOIDAL FORCING
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et al. (1981); Glass and Mackey(1988); Glass(1991); Coombes and Bressloff
(1999); Smithet al. (2000); Coombeset al. (2001
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we need to solve (16) with V(tn + σ) = V + Acne−σ/τ . This has the solution

V(t; tn, cn) = I +

(
0

1 + ω2

)
[sin(ωt) − ω cos(ωt)]

+ e
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(Glass, 1991), and are labeled by the ratio of frequencies, e.g., 3 : 2. (For this
example, the oscillator would pass through two cycles in the same time that the
forcing signal took to pass through three cycles.) The system (1), (2) is capable
of periodically oscillating for some values of its parameters and input, so under
periodic forcing we expect it to have some features in common with periodically
forced oscillators. However, the presence of the bifurcation separating periodic
from burst firing in the unforced system may mean that new features appear when
it is periodically forced.

Consider the case ofq : 1 locking, where we have one firing during a period of
qT (ω = 2π/T), i.e., duringq forcing cycles. For this case,cn+1 = cn, so letc∗

be the smallest root of

cn = cne−qT/τ
+ B + C

[
cne−qT/τ

]2
. (32)

We can see from (20) that in this periodically-locked state

1 = I +

(
0

1 + ω2

)
[sin
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Combining the two terms involvingφn, equation (36) can be rewritten as

1 − I − eσ−qT
[Ac∗e−σ/τ

− I e−σ
] = (1 − e−qT)

(
0

√
1 + ω2

)
sin(φn
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Figure 8. Boundaries of the 1 : 1 tongue from (40) (solid line) for the map (27)–(29). The
dashed line indicates the curve of subcritical Hopf bifurcations.0 = 0.2, other parameters
are as in Fig.3.

solutions was then determined by evaluating the eigenvalues of a numerically-
determined approximation of the Jacobian of (27)–(29) at the corresponding
points.]

This process of finding the boundaries of resonance tongues can be carried out for
other frequency ratios, but the resulting equations are more complicated. Note that
this procedure is not affected by the presence of the periodic→ bursting boundary
in parameter space. A similar observation was made inYoshino et al. (1999),
where the authors studied a periodically forced Fitzhugh–Nagumo system as the
underlying dynamics changed from excitable to oscillatory. Note also that Fig.8 is
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Figure 9. Bistability for the map (27)–(29) when I = 1.22 (cf. Fig.8). The top panel
shows iterates of the map, while the bottom one shows the 1 : 1 locked solution and its
stability, for exactly the same parameter values (the 1 : 1 solution loses stability through
a subcritical Hopf bifurcation—see text). Note that for∼6.88 < I <∼ 7.08, there is
evidence of bistability, as the attractor in the top panel is not the same as that in the bottom
panel. Parameters are as in Fig.8.

Note that this decrease in threshold could not be predicted from looking at Fig.8,
since the transition into bursting for this value ofω does not involve leaving the 1 : 1
tongue. Thus the effective ‘burst threshold’ can be either increased or decreased,
depending on the frequency of forcing, as was observed inLaing(2002). This phe-
nomenon of shifting the effective threshold has not yet been observed with actual
pyramidal cells, but should be straightforward to verify.

3.2. Stochastic resonance.Stochastic resonance is the phenomenon whereby
moderate amounts of noise, when added to a system that has a subthreshold input
signal, cause the signal to be observable in the system’s output (Gammaitoniet al.,
1998). For small noise intensities the signal cannot be observed, as it is subthresh-
old, and for high intensities the system’s output is swamped by the noise, so if the
signal to noise ratio at the output is plotted as a function of noise intensity, it will
show a maximum at some moderate value of noise intensity.

We have already derived a map, (27)–(29), for the sinusoidally forced system (1),
(2), and we can use this to show stochastic resonance in (1), (2), since it already
incorporates a signal—the sinusoid. One choice of modeling the effect of noise is



852 C. R. Laing and A. Longtin

Figure 10. Instantaneous frequency (dots) and the maximal Lyapunov exponent (solid line)
as a function ofI for ω = 6 (top) andω = 7.15 (bottom). See Fig.8. With no periodic
forcing the system shows bursts forI greater than∼1.22, so depending on the frequency

!
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In order to quantify the signal to noise ratio, we need to choose which aspect of
the system (1), (2) is to be considered as the output. As was done inLaing (2002),
we use the high-frequency ‘doublets’ that occur at the end of a burst. These could
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Figure 11. The power spectrum of (27), (28) and (42) as defined in (43)–(45) for ε =

e−6 (dashed),ε = e−4 (solid) andε = e−2 (dash–dotted). Other parameter values are
I = 1.21, A = 2.3, B = 0.15, C = 2, σ = 0.4, τ = 1, r = 0.6, 0 = 0.02, ω = 0.1.
The spectra result from averaging over five noise realizations withN = 3000. Note that
I = 1.21 is just below the bifurcation separating periodic from burst firing (see Fig.3).

a simplification of the six variable ODE model presented inDoiron et al. (2002),
which was itself a drastic simplification of the multicompartment model of
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Figure 12. The signal to noise ratio of (27), (28) and (42) as defined in (43)–(45) as a
function of ε. Parameters are as in Fig.11. The dashed lines indicate± one standard
deviation.

This reduced model is of use because of its simplicity. Computationally it is
much simpler to simulate than ionic models, and it also has fewer parameters that
can be varied. Because of our understanding of the mechanisms we are modeling
(
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a dynamic variable, so that it increased during a burst, as is known to occur (Turner,
2002). Then a burst could be terminated by a decreasing ISI meeting an increasing
refractory period, resulting in the failure to produce a DAP. Another example could
involve including a refractory period in the soma and investigating the effects of
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alternative to (1) is

dV

dt
= I − V + Ac

∑
n

H(tn − tn−1 − r )s(t − tn) (A.2)

where

s(t) =
ab

b − a
H(t)(e−at

− e−bt), 0 < a < b (A.3)

and the contribution to the term involvings from firings other than the most recent
may or may not be taken into account. For (A.2), (A.3), V and its first derivative
will be continuous between firings, and the time to the peak ofs can be related to
the effective delay between a somatic action potential and the maximum flow of
current from dendrite to soma. A disadvantage of using these smoother forms of
delayed feedback is that even in the unforced case, the map (7), (8) can no longer
be written explicitly, but will involve equations that must be solved numerically.

It is also possible to replace the Heaviside function,H(x), that determines whe-
ther there is effective feedback from the dendrite to soma in (1) with a smooth
approximation, e.g.,[1 + tanh(νx)]/2, whereν is sufficiently large. Doing this
would remove the distinction between cases(i i ) and (i i i ) in (7). The B + Cc2

term in (2) could also be replaced by an increasing function ofc, but this would
affect both the analytical tractability of the system and its chaotic nature.

It is also possible to have partial failure of backpropagation, rather than complete.
This would involve replacing the Heaviside function in (1) with, for example

(1 − α)H(tn − t
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The modifications presented above may be useful for other applications of the
model (1), (2), for example, simulating an array of such neurons, and demonstrate
that there is no single ‘correct’ model of ghostbursting, but rather a variety.
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