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Type I Burst Excitability
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Abstract. We introduce the concept of “type I burst excitability”, which is a generalization of the “normal”
excitability that is well-known in cardiac and neural systems. We demonstrate this type of burst excitability in
a specific model system, a pyramidal cell from the electrosensory lateral line lobe of the weakly electric fish
Apteronotus leptorhynchus. As depolarizing current is increased, a saddle-node bifurcation of periodic orbits occurs,
which separates tonic and burst activity. This bifurcation is responsible for the excitable nature of the system, and
is the basis for the “type I” designation. We verify the existence of this transition from in vitro recordings of a
number of actual pyramidal cells. A scaling relationship between the magnitude and duration of a current pulse
required to induce a burst is derived. We also observe this type of burst excitability and the scaling relationships
in a multicompartmental model that is driven by realistic stochastic synaptic inputs mimicking sensory input. We
conclude by discussing the relevance of burst excitability to communication between weakly electric fish.
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1. Introduction

Bursting, in which a cell periodically switches from
quiescent behavior to a rapidly spiking state and back
again, is an important and common form of electri-
cal activity (de Vreis, 1998; Izhikevich, 2000; Keener
and Sneyd, 1998; Rinzel and Ermentrout, 1998). In
this paper we introduce a specific example of what we
term “burst excitability”. Burst excitability is analo-
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and which also have a “global connection” which the
system approximately follows during the large excur-
sion in phase space (Ermentrout, 1996; Gutkin and
Ermentrout, 1998).

We discuss burst excitability in a system which
also has a saddle-node bifurcation, although of peri-
odic orbits rather than fixed points, and which also
has a “global connection” in phase space. Specifically,
we discuss the “ghostburster” model of Doiron et al.
(2002), a model of a pyramidal cell from the electrosen-
sory lateral line lobe (ELL) of a weakly electric fish that
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than the refractory period of the dendrite and the den-
drite fails to produce an action potential in response
to a somatic one, so little current flows from the den-
drite to the soma, no DAP appears, and the next ISI is
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space and return to a periodic orbit. We do have this
“reinjection”, as can be seen in the behavior of pd dur-
ing a burst (Fig. 2, bottom panel). The variable pd grad-
ually decreases through a burst, but cannot continue to
do this forever, as eventually the effect of the dendritic
refractory period come into play, the burst terminates,
and pd rapidly increases—this is the reinjection.

(For the study of burst excitability in the ghost-
burster, we are making an analogy between the saddle-
node bifurcation of fixed points in the Morris–Lecar
system (Fig. 1) and the saddle-node bifurcation of pe-
riodic orbits in the ghostburster. However, for burst ex-
citability in other bursting systems, other bifurcations
may relevant.)

For a value of I just below that corresponding to the
periodic to bursting transition, the stable manifold of
the unstable periodic orbit acts as a threshold—if this
is crossed, pd starts to decrease and continues to do so
until the burst terminates and the trajectory returns to
the stable periodic orbit. An example of this is shown
in Fig. 6. At a current of 8.3, the neuron fires periodi-
cally. The current is stepped from 8.3 to either 10.5 or
11 for 10 ms, and then returned to 8.3. The step to 10.5
fails to induce a burst and the variables return directly to
their previous (periodic) values, but a step to 11 pushes
the system over threshold, pd decreases until the end of
the burst, and then the variables return to their previous
values. Note that most of the burst occurs after I has
been returned to 8.3, another signature of the excitable
nature of the system.

Thus, for the system (1)–(6), we have a new form
of excitability, analogous to the usual form with the
associations

Normal excitability Type I burst excitability

Fixed point Periodic firing

Action potential Burst

However, the analogy is not exact since before the per-
turbation the system (1)–(6) is periodically oscillating,
rather than at a fixed point, and the phase of the os-
cillation at which the perturbation is applied must be
taken into consideration. The value of this phase can
greatly affect the resulting burst. This is demonstrated
in Fig. 7, where two identical current pulses are ap-
plied but at slightly different phases of the underlying
oscillation (the actual difference in phases for the two
situations is approximately 1/8 of a cycle). Note that
the time between the onset of the pulse and the termi-
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6.2. Numerical Results

In Fig. 9 we show numerical results for the system
(1)–(6) that are consistent with the scaling of (13). Here,
the current before a pulse (effectively ν) is held constant
while the height of the pulse (effectively λ) is increased.
We measured the minimum duration of a pulse needed
to produce a burst with probability 0.5. We have to take
this probabilistic approach for burst excitability as the
“rest state” is now periodic firing, and the time of the
onset of the pulse relative to the phase of the periodic
firing has to be considered (see Fig. 7). (This would
also be the case if, e.g. the system shown in Fig. 1 was
weakly periodically forced.)

To obtain Fig. 9, a number of pulses were applied at
random phases of the periodic oscillation. (The time be-
tween pulses was sufficient for the system to relax back
to the periodic orbit.) The average number of bursts per
pulse is a continuous function of both pulse duration
and strength, and curves for probabilities other than
0.5 are similar to that shown in Fig. 9. As predicted by
(13), the minimum pulse duration required to induce a
burst for a fixed baseline current (effectively ν) is in-
versely proportional to the height of the pulse above the
value needed to produce bursting. (The offset, 0.1235,
in the caption of Fig. 9 is a result of the pulse height
being ν + λ, not just λ.) The baseline current was set
at I = 8.3.

Note that a plot of the form shown in Fig. 9 but with
the axes interchanged (i.e. a plot of the stimulus inten-
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Figure 9. Minimum duration of a pulse required to generate an
average of one burst per two pulses for the system (1)
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ODEs:

du

dt
= I − g1m(u)(u − 1) − gK (u − uK )

− gL (u − uL ) (16)
dv

dt
= φ[v(u) − v]

τ (u)
(17)

where

m(u) = 1 + tanh [(u − u1)/u2]

2
(18)

v(u) = 1 + tanh [(u − u3)/u4]

2
(19)

and

τ (u) = 1

cosh [(u − u3)/(2u4)]
(20)

We use the following parameter values: g1 = 1, gK =
2, uK = −0.7, gL =L)]
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