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Abstract. Neural field models have been used for many years to model a variety
of macroscopic spatiotemporal patterns in the cortex. Most authors have considered
homogeneous domains, resulting in equations that are translationally invariant. How-
ever, there is an obvious need to better understand the dynamics of such neural field
models on heterogeneous domains. One way to include heterogeneity is through the
introduction of randomly-chosen “frozen” spatial noise to the system. In this chapter
we investigate the effects of including such noise on the speed of a moving “bump”
of activity in a particular neural field model. The spatial noise is parameterised by
a large but finite number of random variables, and the effects of including it can be
determined in a computationally-efficient way using ideas from the field of Uncertainty
Quantification. To determine the average speed of a bump in this type of heterogeneous
domain involves evaluating a high-dimensional integral, and a variety of methods are
compared for doing this. We find that including heterogeneity of this form in a variety
of ways always slows down the moving bump.

1. Introduction

Neural field models have been used for many years as models of large-scale pattern
formation in the cortex [9, 13, 1, 32, 33, 35, 16, 28]. These models are typically formu-
lated as nonlocal partial differential equations in space and time where the nonlocality
arises via spatial integrals, meant to represent the influence of neurons at many different
spatial locations on the dynamics at a specific location [13, 9]. They have been used
to model a variety of neurophysiological phenomena such as working memory [33], ori-
entation tuning in the visual cortex [4] and EEG rhythms [39]. Much of the analysis
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heterogeneity such as adding “frozen” spatial noise, and driving the system with tem-
poral noise. Bressloff [8] adapted ideas from PDE theory to study the effects of slowly
modulated (in space) synaptic connectivity on the invasion and extinction of activity in
a neural field model. Several authors have very recently considered the effects of additive
spatio-temporal noise on the dynamics of a neural field [11, 26, 24, 6].

In this chapter we will use ideas from the relatively new field of Uncertainty Quantifi-
cation (UQ) to investigate the effects of spatial heterogeneity on the dynamics of moving
“bumps” in a particular neural field model. Traditionally, numerical models of physi-
cal phenomena have been solved under the assumption that both the initial conditions
and all values of relevant parameters are known exactly. However, recent increases in
computational power have meant that it is now possible to solve a model where one or
more parameters are not known exactly, but are known (or assumed) to come from some
distribution(s). For our purposes, UQ involves a systematic investigation of the effects
of this uncertainty in parameter values on quantities of interest. The field of UQ is large
and rapidly growing [34, 45, 42] and here we will only use those aspects of it which are
directly relevant.

2. Model and Analysis

The model we first consider is governed by the following equations:

∂u(x, t)

∂t
= −u(x, t) +

∫ 2π

0

G(x − y)F [u(y, t) − a(y, t) + h(y)]dy(1)

τ
∂a(x, t)

∂t
= Bu(x, t) − a(x, t)(2)

where u(x, t) represents the average voltage of neurons at position x ∈ [0, 2π] at time
t, and a(x, t
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random function of y, in a way to be explained below. In particular we wish to answer
the question: given that h(y) is randomly chosen from some distribution of functions,
what is the expected value of the average speed of the resulting travelling bump (after
transients have decayed)? As mentioned, we will answer this using techniques from the
field of uncertainty quantification [34, 41]. Here, the uncertainty arises because we do
not exactly know h(y). This uncertainty then affects the dynamics of the neural field
model, making measurable quantities such as the bump speed uncertain, i.e. have some
distribution of values. Typically, we would like to describe this distribution so that we
can calculate, for example, its mean.

The form of the coupling function G(x) allows us to write (1) as

∂u(x, t)

∂t
= −u(x, t) + 0.09

∫ 2π

0

F [u(y, t) − a(y, t) + h(y)] dy(4)

+ 0.45 cos x

∫ 2π

0

F [u(y, t) − a(y, t) + h(y)] cos y dy

+ 0.45 sin x

∫ 2π

0

F [u(y, t) − a(y, t) + h(y)] sin y dy

As noted [31], if we expand u(x, t) and a(x, t) in Fourier series in x we see that terms
of the form sin (nx) and cos (nx) for n > 1 will decay to zero, and since we are not
interested in transients we write

(5) u(x, t) = u0(t) + uc(t) cos x + us(t) sin x

and

(6) a(x, t) = a0(t) + ac(t) cos x + as(t) sin x

Substituting these expansions into (2) and (4) we find that the modulated bumps of
interest are described by the six ordinary differential equations (ODEs)

du0

dt
= −u0 + 0.09

∫ 2π

0

F [u0 − a0 + (uc − ac) cos x + (us − as) sin x + h(x)] dx

(7)

duc

dt
= −uc + 0.45

∫ 2π

0

F [u0 − a0 + (uc − ac) cos x + (us − as) sin x + h(x)] cos x dx(8)

dus

dt
= −us + 0.45

∫2π

0

F [u0 − x + (
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0 = Bu0(tj) − a0(tj) + τ

M∑
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To find the eigenpairs of C consider the function cos (my), where m ∈ N
+. This is

periodic on the domain [0, 2π] and we have

2b

∫ 2π

0

C(x, y) cos (my) dy = σ

∫ 2π

0

exp

[
−π

4

(
x − y

b

)2
]

cos (my) dy(29)

= σ

∫ x

x−2π

exp

[
−π

4

(z

b

)2
]

cos (m(x − z)) dz(30)

Now if b is small relative to the domain size (2π), we can approximate this integral by
the infinite one:

2b

∫ 2π

0

C(x, y) cos (my) dy ≈ σ

∫
∞

−∞

exp

[
−π

4

(z

b

)2
]

cos (m(x − z)) dz(31)

= σ cos (mx)

∫
∞

−∞

exp

[
−π

4

(z

b

)2
]

cos (mz) dz

+ σ sin (mx)

∫
∞

−∞

exp

[
−π

4

(z

b

)2
]

sin (mz) dz(32)

= 2bσ cos (mx) exp

[−(mb)2

π

]
(33)

where we have used the fact that [38]

(34)

∫
∞

−∞

exp

[
−π

4

(z

b

)2
]

cos (mz) dz = 2b exp

[−(mb)2

π

]

and that exp [−(π/4)(z/b)2] sin (mz) is an odd function. Thus (keeping in mind the
approximations made above) a partial set of eigenvalues and eigenfunctions for C is

(35) λ(1)
m = σ exp

[−(mb)2

π

]
; e(1)m (x) =

cos (mx)√
π

for m = 1, 2
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form of the polynomials is determined by the probability density function of the random
variables, the {βm}. [44, 42]) Once the coefficients have been found, any quantity such
as the expected value of, say u0

0, can be found by integrating over the space of random
variables. Unfortunately, modifying code capable of solving (19)-(24) and (25) to find
all coefficients in the expansion just mentioned is non-trivial.

The other common alternative is referred to as stochastic collocation [41, 34], which in-
volves solving (19)-(24) and (25) at a number of different points in the random parameter
space, i.e. using different {βm}. We then have the value of all variables u0

0, u0
1, . . . , as

2M , T
at these different points and can use interpolation to estimate the values of these variables
at other points in the random parameter space. If the values of {βm
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Figure 11. Modulated connectivity. Mean period, T (top) and standard
deviation, s =

√
VT (bottom) as a function of random field strength σ.
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