






where, without loss of generality, we have set Ω1 = 0. When D1 = D2 = Ω2 = 0,
we recover the results of Abrams et al. [1]. In particular, r1 = 1 (θ1

i all equal) is
invariant. If r1
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Figure 1: (Colour online) Fixed points of (11)-(13) when D1 = D2 = D, Ω2 = 0.
(a): r1 and r2 as a function of D. (b): φ as a function of D. Blue curve: stable
chimera. Red curve: saddle chimera. Black curve: symmetric state (r1 = r2).
Solid lines indicate stable solutions, dashed lines unstable. Other parameters: A =
0.2, β = 0.07.
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Figure 4: (Colour online) r1 and r2 fitted to simulations of (1), where all ωk
i are

chosen from a normal distribution of mean zero and standard deviation σ. Blue
circles joined by a line: stable chimera. Black crosses joined by a line: stable
symmetric state (r1 = r2). Red dashed line: presumed unstable symmetric state.
Compare with Fig. 1. See the text for details on the fitting. Other parameters:
A = 0.2, β = 0.07, N = 1000.

and found chimera states, both for homogeneous and heterogeneous networks.

4 Other distributions

Now we consider the effects of choosing the ωk
i from distributions other than the

Lorentzian, first numerically and then analytically.

4.1 Gaussian distribution: numerical simulations

Figure 4 shows the results of fitting the time-dependent PDF

fk(θ, t) =
1

2π

[
1 +

{
∞∑

n=1

(
rkeiφk

)n
einθ + c.c.

}]

=
1 − r2

k

2π[1 − 2rk cos (φk − θ) + r2
k]

(14)

to each population in simulations of (1) after transients, where all ωk
i are chosen

from a normal distribution of mean zero and standard deviation σ. We found that
both r1 and r2 tended to constant values, as did φ2 − φ1 (not shown). Only stable
states are shown in Fig. 4, but the results are compatible with those shown in Fig. 1,
suggesting that there is nothing special about the Lorentzian distribution, as has
been noted by others [14, 7]. The unstable states could presumably be found using
the “equation-free” method [13, 8, 12] of analysing low-dimensional descriptions of
high-dimensional systems, under the assumption that these states are also exactly
described by the variables r, φ





6 Oscillators on a ring



In some cases this double integral can be exactly evaluated. We follow [3] and
suppose that G(x) = (1 + A cos x)/(2π), so that G(x − y) = (1 + A cos x cos y +
A sin x sin y)/(2π). Let us define

h(y) =

∫ ∞

−∞

(
ω − Ω −

√
(ω − Ω)2 − R2(y)

R(y)

)
g(ω)dω

Thus under the assumption that R and Θ are even (which can be shown to be
self-consistent)

R(x)eiΘ(x) = c + a cos x (22)

where

c =
eiβ

2π

∫ 2π

0

eiΘ(y)h(y)dy (23)

and

a =
Aeiβ

2π

∫ 2π

0

eiΘ(y)h(y) cos y dy (24)
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6.4 Chimera states and “bumps”

Chimera states as studied in this section are very similar to “bump” states which
have been studied in computational neuroscience modelling
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