


2 SHAWN MEANS AND CARLO R. LAING



EXPLOSIVE BEHAVIOUR IN NETWORKS OF WINFREE OSCILLATORS 3P
k P (k) = N and we choose the marginal distributions of the in-degrees and the out-degrees

to be equal.

Using the theory in [16] (or see [15, 5] for similar derivations) one can show that the long-time

dynamics of the network is described by

@b(k; t)

@t
=

�R(k; t)

2
+ [i!0(k) − �(k)]b(k; t) − �R(k; t)

2
[b(k; t)]2 (5)

where !0(k) and �(k) are the centre and half-width at half-maximum, respectively, of the

Lorentzian distribution from which the values of !j for oscillators with degree k are chosen:

g(!(k)) =
�(k)=�

[!(k) − !0(k)]2 + �2(k)
(6)

The variable

b(k; t) =

Z ∞

−∞

Z 2π

0
f(�; !|k; t)e−iθd� d! (7)

is the complex-valued order parameter for oscillators with degree k, where f(�; !|k; t)d�d!

is the probability that an oscillator with degree k has phase in [�; � + d�] and frequency in

[!; ! + d!] at time t. R(k; t) is given by

R(k; t) =
1

⟨k⟩
X
k′

P (k′)a(k′ → k)G(k′; t) (8)
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35
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b4(k; t) + b

4
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70
(9)

where overline indicates the complex conjugate. The form of G is determined by the function

T (�). This derivation of a degree-dependent mean �eld description uses the Ott/Antonsen

ansatz [24, 25]. A crucial ingredient for the use of this ansatz is the sinusoidal form of the

function U(�).

We are interested in the case of neutral assortativity, for which [31]

a(k′ → k) =
k′

outkin

N⟨k⟩
(10)

and cases where either the in- and out-degree of an oscillator are independent, or they are

equal (and thus perfectly correlated). Writing P (k′
in; k′

out) instead of P (k′)=N we have

R(kin; kout) =
kin

⟨k⟩2

X
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where g is the Lorentzian (6) and thus the mean �ring rate over the network is

F =
1

2�

X
kin

p(kin)f(kin) (20)

For comparison with our results below we brie
y describe the dynamics of a fully connected

network of Winfree oscillators. Two types of behaviour are typically seen in such a network:

synchronous and asynchronous [26, 7], although the fraction of oscillators actually oscillating

varies in di�erent asynchronous states. Increasing � tends to destroy synchronous behaviour

through a saddle-node-on-invariant-circle (SNIC) bifurcation, as many of the oscillators \lock"

to an approximate �xed point. For moderate � increasing the spread of intrinsic frequencies

tends to destroy synchronous behaviour through a supercritical Hopf bifurcation, as the oscil-

lators become too dissimilar in frequency to synchronise [26]. Below we will see a wider variety

of bifurcations resulting from the networks’ structure.

3. Gaussian frequency distribution

We choose the degree distribution p(k) to be a truncated power law distribution with expo-

nent −3, as many others have done when studying ES [18, 8]:

p(k) =

(
a=k3 m ≤ k ≤ M

0 otherwise
(21)

where a is a normalisation such that
MX

k=m

a

k3
= 1: (22)

Since the degrees are all large (i.e. 1 ≪ m) we treat k as a continuous variable and approximate
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Figure 1. (a): solid line: (24); dots: target frequencies and degrees for one

realisation of a network. (b): solid line: (24); dots: actual frequencies and

degrees for one realisation of a network. Parameters: m = 100; M = 400; N =

2000; � = 0:01; � = 0:00005.

frequency with the node with smallest in-degree etc. These values are shown as dots in panel

(a), along with the theoretical relationship (24). Panel (b) shows the actual values of the

!j (dots), taken from a Lorentzian with centre equal to the values in panel (a) and HWHM

0.00005.

Clearly there is a positive correlation between kin,j and !j , but the Pearson correlation

coe�cient between them, de�ned by

�kω =

PN
j=1(kin,j − ⟨k⟩)(!j − �!)qPN

j=1(kin,j − ⟨k⟩)2
qPN

j=1(!j − �!)2
(26)

where �! is the mean of the !j , is less than 1 and (using this construction) cannot be system-

atically varied, as was possible in [16, 15]. Note that the idea of not having a perfect match

between an oscillator’s degree and a prescribed frequency (as we have here for � ̸= 0) was

discussed in [33], where it was shown that such a mismatch actually created ES.

To investigate the in
uence of varying the correlation between kin,j and !j , we created a se-

quence of the appropriate degrees, chose values of ! from a Gaussian distribution and randomly

paired them. We then repeatedly performed Monte Carlo swaps of ! values; potential swaps

were accepted if they increased the Pearson correlation coe�cient toward a target value { typ-

ically a positive number. This approach required substantial e�ort to satisfy high correlations

(≥ 0:9), since a sequence of ! randomly paired with degree sequences typically exhibited no

correlation. Alternatively, we maximised the correlation between the kin,j and !j by initially

sorting both sequences as above. Aligning maximal-minimal values then produced the highest

possible correlation coe�cient for given sequences which we then reduced using Monte Carlo

swaps, with swaps accepted if they pushed the correlation value toward a target value. Se-

quences of degrees and frequencies generated with this approach were assembled into adjacency
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matrices utilising our network assembly scheme, the \permutation method", presented previ-

ously [20]. Note that with this approach of constructing networks the Ott/Antonsen approach

cannot be used, and we must simulate the resulting networks to determine their behaviour.

3.1. Results. We numerically investigate (16) with (14). We evaluate functions at all integer

in-degrees satisfying m + 1 ≤ kin ≤ M − 1 to avoid the singularities in bq−1 when its argument

is either 0 or 1, resulting in a moderately large set of ordinary di�erential equations. We could

use a more e�cient method which approximates the sum in (14) with fewer \virtual" degrees

as explained in [15], but that is unnecessary here. Typically we integrate (16) to a stable �xed

point and then use pseudo-arclength continuation to follow the �xed point as parameters are

varied, determining the stability of the �xed point from the eigenvalues of the linearisation of

the dynamics about the �xed point [13, 9]. Periodic solutions are studied in a similar way by

putting a Poincar�e section in the 
ow (at Re[b(m+1; t)] = 0) and integrating from this section

until the solution next hits this section. Stability is given by the Floquet multipliers of the

periodic solution.

The usual complex-valued order parameter de�ned for the network (1) is

Y (t) =
1

N

NX
j=1

eiθj (27)

and for (16) the appropriate measure is

Z(t) =
X
kin

p(kin)�b(kin; t) (28)

We �rst vary � with � = 0:01. Results are shown in Fig. 2, where panel (a) shows results

from (16). For small � (16) has a stable �xed point at which the network is incoherent, with

|Z| being small. As � is increased the �xed point undergoes a subcritical Hopf bifurcation,

becoming unstable. (In the all-to-all coupled network, this Hopf bifurcation is supercritical.)

The unstable periodic orbit created in this bifurcation is shown with red crosses and it becomes

stable in a saddle-node bifurcation. Thus there is a small range of � values for which the network

is bistable. (For periodic orbits, the quantity plotted on the vertical axis is the average over

one period of |Z(t)|.)
Panel (b) of Fig. 2 shows |Y | for the network (1) with � quasistatically increased or decreased,

using the �nal state of the network at one value of � as the initial condition for the next value.

The value plotted is the mean over 5000 time units of |Y (t)|. The bistability and hysteresis is

clear. Networks of the form used in (1) were created using the con�guration model [
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Figure 2. (a): |Z| for �xed point (lines) and periodic solutions (symbols)

of (16). Blue solutions are stable while red are unstable. (b): |Y | for the

network (1). Black corresponds to increasing � and magenta to decreasing.

Parameters: m = 100; M = 400; N = 2000; � = 0:01; � = 0:0005.

0 0.01 0.02 0.03 0.04

Figure 3. Curves of Hopf and saddle-node bifurcations as seen in Fig. 2(a) as

both � and � are varied. The network is bistable between the curves. Parame-

ters: m = 100; M = 400; � = 0:0005.



EXPLOSIVE BEHAVIOUR IN NETWORKS OF WINFREE OSCILLATORS 9

quasistatically increased or decreased the coupling strength � and measured the time-averaged

value of |Y |. This is shown in Fig 4C where we see results similar to those in Fig. 2 | a small

region of bistability. Panel D of Fig 4 shows the fraction of e�ective frequencies as the coupling

strength is progressively increased, at �kω = 0:95.

The distribution of frequencies and their fractional evolution corresponds to the mean and

standard deviation of the Gaussian distribution, and the highest concentration of frequen-

cies around the mean emerge dominant. However, the e�ects of having a large value of �kω

for Gaussian distributed intrinsic frequencies is minimal compared with that for power law

distributed frequencies, considered next.

4. Power law frequency distribution

We keep the power law distribution of degrees (21) and now consider the case where the

target distribution frequency distribution is also power law distributed and limited between c

and C, but with the exponent as a parameter, i.e.

pω0(!0) =

(
aω=!γ+1

0 c ≤ !0 ≤ C

0 otherwise
(29)

where aω = 
cγCγ=(Cγ − cγ). As above, having created a network we randomly choose target

frequencies from the distribution (29), then assign the smallest target frequency to the oscillator

with the smallest in-degree, all the way up to the largest target frequency being associated

with oscillator with the largest in-degree. The actual !j are then chosen from a Lorentzian

with HWHM equal to � centred at the target frequency, as above. The dependence of !0 on

k is then

!0(k) = bp−1
ω0

(bp(k)) (30)

where bpω0 is the cumulative distribution function of pω0 , i.e

bpω0(!0) =
aω




�
1

cγ
− 1

!γ
0

�
(31)

4.1. Highly correlated degree and frequency.

4.1.1. Independent degrees. We �rst consider the case of independent degrees, as in Sec. 3.

Thus we numerically investigate (16) with (14), but using (30). We choose � = 0:01, set

c = 1; C = 6, and initially choose 
 = 2. As in Sec. 3, for small � the system has a stable �xed

point and this becomes unstable through a subcritical Hopf bifurcation as � is increased. The

results are shown in Fig. 5 where we see the periodic orbit created in the Hopf bifurcation,

giving the same scenario as in Fig. 2 (a). Quasistatically increasing � the solution of (16)

would jump from a �xed point to a periodic state with amplitude signi�cantly larger than

zero. Decreasing �, the solution would jump from a �nite-amplitude periodic orbit to a �xed

point. (As above, for periodic orbits, the quantity plotted on the vertical axis is the average

over one period of |Z(t)|.)
The behaviour of a particular realisation of the discrete network (1) is slightly di�erent,

since a �xed point of (16) corresponds to an incoherent solution of (1) for which |Y | is not

constant, having small 
uctuations about an average value. An example of such dynamics is

shown in Fig. 6(a), with � = 0:92. (Other parameters have the same values as in Fig. 5.) We

see that most oscillators are oscillating, but with independent phases. Similarly, a periodic

solution of (16) corresponds to a solution of (1) for which |Y | is nearly periodic, with the vast
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Figure 4. Panels A and C: |Y | as � is quasistatically varied for networks with

di�erent values of �kω. Panels B and D: Progression of mean-e�ective frequency

fraction distribution over increasing coupling strength �, for �kω = 0.95; note
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Figure 5. |Z| for �xed point (lines) and periodic (symbols) solutions of (16).

Blue solutions are stable while red are unstable. Parameters: c = 1; C = 6; m =

100; M = 400; 
 = 2; � = 0:01.

hypothesise that it is destroyed in a homoclinic bifurcation with the \middle" unstable branch.

Thus the system has no stable periodic orbits, but rather a region of bistability between two

�xed points with di�erent values of |Z|. Either increasing or decreasing � the network jumps

from one �xed point to another. Fig. 7(b) shows the mean �ring rate F across the network

and we see that the branch with large |Z| has small F and vice versa. So even if |Z| is large,

normally indicating synchronous oscillations, here it corresponds to a state in which most of

the oscillators are locked at an approximate �xed point, not �ring.

Fig. 8 shows (on a logarithmic scale) the expected frequency for oscillators with in-degree

kin, given by (19), for three coexisting steady states in Fig. 7 at � = 1:7. The stable solution

with highest frequencies has the lowest value of |Z| and vice versa. Interestingly, for the upper

curve the frequency increases with in-degree kin, but for the lower two curves the maximum

frequency does not occur at either extreme of the kin values.

A third scenario occurs for 
 = 1:5, as seen in Fig. 9. The �xed point that is stable for small

� becomes unstable through a subcritical Hopf bifurcation as � is increased as in Fig. 5, but the

stable periodic orbit is destroyed in a SNIC bifurcation which occurs at a slightly lower value

of � than that at which the Hopf bifurcation occurs. So if � is slowly increased the network

will jump from one �xed point to another �xed point. But if � is then decreased the network

will switch from a �xed point to a stable periodic orbit. This stable orbit is then destroyed in

a saddle-node bifurcation as � is further decreased and the network will jump to the original

�xed point.
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Figure 6. sin � shown in colour for a simulation of (1). The oscillators are

sorted by their in-degree. (a): � = 0:92. (b): � = 1. Other parameters:

N
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Figure 7. (a) |Z| and (b) mean �ring rate F for �xed points of (16). Solid:

stable; dashed: unstable. The bifurcation on the lower branch in (a) is a

subcritical Hopf. Parameters: c = 1; C = 6; m = 100; M = 400; 
 = 1; � = 0:01.
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Figure 8. Expected frequency for oscillators with in-degree kin, given by (19),

for three coexisting steady states at � = 1:7. See Fig. 7. Blue: stable solutions;

red: unstable solution. Other parameters: c = 1; C = 6; m = 100; M = 400; 
 =

1; � = 0:01.
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Figure 9. |Z| for �xed point (lines) and periodic (symbols) solutions of (16).

Blue solutions are stable while red are unstable. The stable branch of periodic

orbits terminates at the SNIC bifurcation. Parameters: c = 1; C = 6; m =

100; M = 400; 
 = 1:5; � = 0:01.
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Figure 10. Identical degrees. |Z| for �xed point (lines) and periodic (symbols)

solutions of (16). Blue solutions are stable while red are unstable. The stable

branch of periodic orbits terminates at the SNIC bifurcation. Parameters: c =

1; C = 6; m = 100; M = 400; 
 = 2; � = 0:01.
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