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Abstract

The introduction of delays into ordinary or partial di�erential equation models

is well known to facilitate the production of rich dynamics ranging from periodic

solutions through to spatio-temporal chaos. In this paper we consider a class of scalar

partial di�erential equations with a delayed threshold nonlinearity which admits

exact solutions for equilibria, periodic orbits and travelling waves. Importantly we

show how the spectra of periodic and travelling wave solutions can be determined

in terms of the zeros of a complex analytic function. Using this as a computational

tool to determine stability we show that delays can have very di�erent e�ects on

threshold systems with negative as opposed to positive feedback. Direct numerical

simulations are used to con�rm our bifurcation analysis, and to probe some of the

rich behaviour possible for mixed feedback.
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1 Introduction

Delayed di�erential equations (DDEs) arise naturally as models of dynamical systems

where memory e�ects are important. Indeed in models of population biology, ecology

and epidemiology they are almost ubiquitous [1]. Delays also arise in many physiological

systems as part of a feedback loop { one classic example being the pupil light re
ex [2],

though many others are wonderfully described in [3,4]. In contrast to models without

delay the analysis of DDEs is notoriously hard and has generated considerable activity

in the mathematics community (see for example [5]). This is directly attributable to

the fact that the solution space for DDEs is in�nite dimensional despite only a �nite

number of dynamical variables appearing in a model. Consider for example a simple

scalar DDE that often arises in physiological modelling: _v = �v=� + f(v(t� �d)), where

f(v(t � �d)) is a nonlinear function of v at time t � �d. Even here the characteristic

equation, 1=� + �� f ′(v) e−��d = 0, determining the stability of a �xed point v can have

an in�nite number of solutions making the spectral analysis challenging [6]. Probing the

properties of fully nonlinear oscillations that are known to arise when f(v) is taken to be a

\humped" function, such as the Hill function f(v) = �n=(�n+vn), is harder still. However,

progress is possible for this case in the limit n ! 1, so that f(v) becomes piecewise

constant: f(v) = 1, v 2 [��; �] and is zero elsewhere. Information about the time where a

solution crosses the threshold at � is now enough to self-consistently determine a periodic

oscillation in closed form [7]. Since threshold models are relatively common in the applied

biological sciences, arising for example in models of calcium release [8], neural tissue [9]

and gene networks [10], it is worthwhile developing a more comprehensive treatment of

delayed threshold models. Since both positive and negative feedback are seen as important

enhancers of the properties of biological systems [11] generic examples from both these

classes, as well as a mixture of the two, should be considered. Moreover, in biological

systems where transport is important it is common to use di�usion as a model for this

process. With this in mind we concentrate in this paper on threshold-di�usion equations

with delay.

In section 2 we introduce our model of choice, a delayed scalar PDE, and discuss some

known results for smooth nonlinearities. We then introduce three distinct threshold non-

linearities describing negative, positive and mixed feedback models. As a precursor to the

analysis of travelling waves we �rst neglect space and consider the generation of periodic



results for the construction of such orbits we present the �rst treatment of their stability.

The Floquet exponents are given in terms of the zeros of a complex analytic function.

Importantly an examination of the spectrum shows that the model with negative feedback

generates stable oscillations with period larger than twice the delay, whilst the positive

feedback model generates unstable orbits with period less than twice the delay. In sec-

tions 4 and 5 we study travelling wave solutions of the full delayed PDE model, calculating

wave speed and stability as a function of the delay. Once again we determine stability

in terms of the zeros of a complex analytic function, which in the context of travelling

waves we refer to as an Evans function. Computation of the Evans function shows that

there is a stable front and an unstable standing bump in the model with positive feedback

and that periodic waves can undergo instabilities in the model with negative feedback.

Direct numerical simulations are used to con�rm our predictions, and also establish that

such wave phenomenon are robust in the sense that they persist for smooth caricatures

of the feedback nonlinearities. The case of mixed feedback is discussed in section 6. Here

we show that, neglecting space, there can be more complex oscillations than occur in the

case of purely negative feedback. We also demonstrate a spatio-temporal chaotic solution.

Finally we discuss natural extensions of the work in this paper.

2 The model

We consider a delayed scalar PDE for the variable v = v(x; t) with x 2 R and t 2 R+,

which takes the form
@v



I Negative feedback with f(v) = H(h� v).

II Positive feedback with f(v) = H(v � h).

III Mixed feedback with f(v) = H(v � h1)H(h2 � v), h2 > h1.

Here, H is a Heaviside step function and h, h1 and h2 are constant thresholds. In all

the cases I-III the presence of a threshold nonlinearity means that (1) can e�ectively be

treated as a piece-wise linear (PWL) system. The study of PWL systems has allowed for

important advances not only in the understanding of excitable systems [14] but also in

the �eld of engineering [15,16].

To see how delay-induced dynamics can di�er between the various types of feedback it is

�rst worthwhile to treat the case of zero di�usion and assess dynamics in a point model.

3 Periodic solutions: zero di�usion limit

In the case of zero di�usion we recover the widely studied delayed ODE model

_v = �v
�

+ f(v(t� �d)): (2)

Many results concerning the existence of periodic orbits are now known for the cases of

smooth monotone positive and negative feedback [17]. Moreover, a Poincar�e-Bendixson

type theorem exists showing that chaotic behaviour is not possible in these cases [18].

However, for mixed feedback, as would occur for example in the Mackey-Glass model [3],

very complex dynamics is possible [19]. Recent work of R�ost and Wu [20] has established

that this can include heteroclinic orbits from the trivial equilibrium to a periodic orbit

oscillating around the positive equilibrium. However, we shall focus here on simple T -

periodic solutions of the form v(t) = q(t) with q(t) = q(t + T ). Importantly, with direct

access to the shape of the periodic orbit, we shall show to pursue a full Flov.cs /F1(Flo)-27(v.cs)-311(/3n58direct1
sy)-311(complex)-311(d18 0outhe)-326(wiurse)-326(case)-396(frning)-micsppr Fm
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Fig. 1. Left: Periodic solution in a model with negative feedback. Right: Periodic solution in a

model with positive feedback. In both cases � = 1, h = 0:5 and �d = 2.

where time is now measured from when q = A−. Here A± are the maximum and minimum

values of q(t). Introducing an origin of time such that q(0) = A− and times t1 and t2 as in

Fig. 1 (left), then q(t1) = q(t1 + t2 + �d) = h and solving these equations for t1 and t2 and

matching solutions at
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Fig. 2. Period T and maximum and minimum values A± of an oscillatory solution as a function

of the delay �d. Here � = 1 and h = 0:5. Left: Solution branch for the model with negative
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Fig. 3. Floquet exponents as zeros of a complex analytic function E(�). Floquet exponents occur

where the zero contours of ER(�) and EI(�) (red and blue lines) intersect. Note the presence of a

zero exponent, as expected for a system with time-translation symmetry. Left: spectrum for the

orbit shown in Fig. 1 (left). Since there are no zeros of E(�) in the right hand complex plane the

solution is stable. Right: spectrum for the orbit shown in Fig. 1 (right). The presence of zeros

of E(�) in the right hand complex plane show that the solution is unstable.

The pair (�; !) may then be found by the simultaneous solution of ER(�; !) = 0 and

EI(�; !) = 0, where ER(�; !) = Re E(� + i!) and EI(�; !) = Im E(� + i!). Hence an ex-

amination of a plot of the zero contours of EI;R can be used to reveal the point spectrum

{ with Floquet exponents occurring where the two contours intersect. A plot obtained

in this fashion is shown in Fig. 3 (left). From time-translation symmetry of the periodic

orbit we see one exponent with � = 0 as expected, and some others just slightly to the

left of the imaginary axis. For the solution branch shown in Fig. 2 (left) no exponents are

ever found in the right hand complex plane and so this branch of periodic orbits is stable.

3.2 Positive feedback

For the case of positive feedback, f(v) = H(v � h), and with 0 < h < � there are two

stable �xed points of (2) at v = 0 and v = � . Assuming that a periodic orbit can coexist

with these �xed points we look for a solution like that depicted in Fig. 1 (right). Here

we have introduced the four unknowns A± and T±, which denote the largest (A+) and

7



smallest (A−) values of the trajectory and the times spent above (T+) and below (T−) the

threshold h. The trajectory increases from A− for a duration T+ and decreases from A+

for a duration T−. The values for these four unknowns are found by enforcing periodicity

of the solution and requiring it to cross threshold twice as in Fig. 1 (right). The details

of this calculation are presented in [23], where it is found that the period of oscillation

T = T+ + T− satis�es the transcendental equation

T = 2�d + �

 
ln
R� e(T−�d)=�

R� 1
+ ln

h
R + (1�R) e(T−�d)=�

i!
; (9)

where R = �=h. The amplitude of oscillation is given by A = A+�A− = �
h
e(T−�d)=� �1

i
.

A plot of the period and amplitude as a function of �d is shown in Fig. 2 (right). In

contrast to the model with negative feedback we observe that �d < T < 2�d.

In a similar fashion to the calculation for negative feedback in section 3.1 we may calculate

the Floquet exponents in terms of the zeros of a complex analytic function E(�), which

this time takes the form

E(�) = det

26664 A(T � �d; �)� 1 B(T � �d + T−; �)

A(T + T(T



4 Positive feedback: fronts and bumps

The existence of travelling front solutions in reaction-di�usion systems with delay is now

reasonably well understood [24{26]. Recent work by Samaey and Sandstede has also shown

how to determine the stability of waves [27]. These authors emphasise that the analytical

determination of spectra is such a hard problem in general that resorting to numerical

computation is sensible. However, for the special case of threshold nonlinearity we will

show here that it is relatively easy to pursue questions relating to wave speed and stability.

In this section we shall �rst study travelling front solutions before moving on to standing

bumps.

4.1 Travelling front

In a co-moving frame a stationary solution that connects the �xed point at v = 0 to the

one at v = � describes a travelling front (heteroclinic connection). Introducing � = x+ ct,

and remembering that f(v) = H(v � h), equation (1) becomes

c
@v

@�
+
@v

@t
= �v

�
+D

@2v

@�2
+H(v(� � c�d; t� �d)� h); (11)

where v = v(�; t). A travelling wave solution q(�) is obtained upon letting @v=@t! 0, so

that q satis�es

D
d2q

d�2
� cdq

d�
� �q = �H(q(� � c�d)� h); � =

1

�
: (12)

Now consider a monotone front solution where q(�) � h for � � 0 and q(�) < h for � < 0.

In this case

q(�) =

8><>:
� + A em�(�−c�d) � � c�d � 0

B em+(�−c�d) � � c�d < 0
; (13)

where

m± =
c�
p
c2 + 4�D

2D
: (14)

Continuity of q and q′ at � = c�d gives the coe�cients A and B as

A =
m+�

m− �m+

; B =
m−�

m− �m+

: (15)

9
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Fig. 4. Speed of a monotone front as a function of the delay �d. Here D = 1, � = 2 and h = 0:5.

The circles denote results from direct numerical simulations performed using the Matlab delay

di�erential equation integrator dde23.

The speed of the front is then determined by demanding that q(0) = h, giving an implicit

equation for c:

h em+c�d =
m−�

m− �m+

; (16)

subject to q(0) � q(



Perturbations of the form u(�; t) = u(�) e�t lead to the eigenvalue problem

Qu = �(q(� � c�d)� h)u(� � c�d) e−��d ; Q = �Dd�� + cd� + �+ �: (19)

The Green’s function, �, of the linear di�erential operator Q (Q� = �) may be calculated

(using Fourier transforms) as

�(�) =
Z ∞
−∞

dk

2�

eik�

Dk2 + ick + �+ �
=

1

D(k+(�)� k−(�))

8><>:
ek�(�)� � � 0

ek+(�)� � < 0
; (20)

where

k±(�) =
c



is stable. For �d 6= 0, there are always non-zero solutions of E(�) = 0 and a dynamic

instability is in principle possible. It may be possible to show analytically that in practice

these bifurcations do not occur, but here we just state that a numerical calculation of the

spectrum shows that the front is stable even in the presence of delays. (Note here that

all of our stability results relate to local stability; proving that a particular solution is

globally attracting is more di�cult [30].)

4.2 A standing bump

Here we consider time-independent standing waves v(x; t) = q(x) that satisfy 
�D d2

dx2
+ �

!
q(x) = H(q(x)� h); x 2 R: (24)

For a symmetric bump solution that connects the �xed point at v = 0 to itself (homoclinic

connection), crossing through the threshold h only twice, we may write

q(x) =

8><>:
� + A1 em+(x−�) +A2 em�(x−�) 0 � x � �

A3 em�(x−�) x > �
; (25)

with m± = �
q
�=D and q(�x) = q(x). Matching the solution and its �rst derivative

at x = �, enforcing the threshold condition q(�) = h, and �xing an origin such that

q′(0) = 0, gives

tanh(m+�) =
h

� � h
; A1 =

h

e−2m+��1
; A2 =

h

1� e2m+�
; A3 = h: (26)

For positive � we require � > 2h. The stability of the bump is determined along similar

lines to section 4.1 using c = 0 and

�(q � h) =
�(x��)

jq′(�)j
+
�(x+ �)

jq′(�)j
: (27)

(Note that jq′(��)j = jq′(�)j.) Perturbations to the bump in the form v(x; t) = q(x) +

u(x; t) can then be shown to satisfy the equation

u(x) =
e−��d

jq′(�)j
[�(x��)u(�) + �(x+ �)u(��)]; (28)

where �(x) = e−k|x| =(2Dk), with k =
q

(�+ �)=D. Substitution of x = �� into (28)

yields a pair of linear equations for the unknown amplitudes (u(�); u(��)). Demanding

12
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Fig. 5. Families of periodic travelling waves. Left: speed c versus period � and right: phase �

versus �. Here D = 1, � = 2 = �d and h = 1:
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Fig. 6. Left: A periodic travelling wave pro�le on an in�nite domain in the model with negative

feedback, corresponding to the rightmost data point (circle) plotted in Fig. 5. Here c = 3:1523,

� = 0:6396, � = 2 = �d, D = 1, � = 20 and h = 1:5. Right: A wave on a �nite domain of length

� with periodic boundary conditions, showing the notation used for its construction.

results from direct numerical simulation. However, not all solutions of (35) correspond to

valid periodic travelling waves. Each alternate family (shown with dashed lines in Fig. 5)

actually corresponds to a wave for which q > h on (0; ��), whereas in the derivation

of (33) and (34), we assumed that q < h on (0; ��). In Fig. 6 (left) we show a plot of a

periodic wave obtained using the above prescription. Although it is possible to develop a

stability condition along the lines for a front, this does not lead to any closed form ex-

pressions for the spectrum (as we get an in�nite set of relations between perturbations at

the threshold crossing points). However for a �nite domain it is possible to make explicit

progress as we show next.

5.2 Finite domain

Here we consider a �nite domain of length � such that the wave is periodic with q(�) =

q(� + �). Moreover we shall focus on the case for which q(�) crosses threshold only twice

as shown in Fig. 6 (right), though more general solutions can be constructed in a similar

fashion. In this case q(�) is parametrised by the six unknowns (A1; A2; A3; A4; c; �) as

q(�) =

8><>:
A1 em+� +A2 em�� 0 < � < (1� �)�

� + A3 em+� +A4 em�� (1� �)� < � < �
; (36)

15



where � is the fraction of the period for which q < h. Matching the solution and its �rst

derivative at � = (1 � �)� and � = � can be used to determine the four amplitudes.

Enforcing the threshold conditions at � = (1 � �)� � c�d and � = � � c�d gives two

further implicit equations for the pair (c; �) that we may solve numerically to determine

the wave properties. On doing this we recover the families of periodic travelling waves on

an in�nite domain found in section 5.1. For the calculation of stability we follow along

similar lines to section 4.1 and make explicit progress using the result that the periodic

Green’s function of Q (given by the right hand side of (19)) can be obtained in closed

form as

�P (�) =
1

D(k+ � k−)

(
ek��

1� ek��
�

ek+�

1� ek+�

)
; 0 < � < �; (37)

with �P (�) = �P (�+�) and k± de�ned as in (21). The linearised equation for the evolution

of perturbations, Qu = ��(h� q(� � c�d))u(� � c�d) e−��d , has the solution

u(�) = �
Z �

0
d�′�P (� � �′)�(h� q(�′ � c�d))u(�′ � c�d) e−��d : (38)

Using the result that

�(h� q(� � c�d)) =
�(� � (1� �)�)

jq′((1� �)�� c�d)j
+

�(� ��)

jq′(�� c�d)j
; (39)

we have

u(�) = �

1� ek
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Fig. 7. Real part of the rightmost roots of E(�) as a function of � for the slowest branch of

solutions shown in Fig. 5.

in Fig. 3, and since they are isolated, zeros can be followed as parameters are varied.

In Fig. 7 we plot the real part of the rightmost complex pair of roots of E(�) for the

slowest branch of solutions shown in Fig. 5. (Over the range of � shown, the imaginary

part of the roots varied between about 0:9i and 1:0i.) We see that as � decreases below

approximately 8, this branch of periodic travelling waves becomes unstable through a

Hopf bifurcation. Figure 8 shows this instability in a direct numerical simulation. We

chose a domain of size 10 and an initial condition that led to a travelling wave with only

two threshold crossings, as analysed above, so that initially � = 10. With D = 1, this

solution is known to be stable. In order to see the instability predicted by Fig. 7 we need

to decrease �, i.e. decrease the domain size while keeping a periodic travelling wave with

only two threshold crossings as the solution. However, from (1) it is clear that rescaling

x : x 7! ax, is equivalent to rescaling D: D 7! D=a2. In the simulation shown in Fig. 8

we switched D from D = 1 to D = (10=7)2 = 100=49 at t = 120, which is equivalent to

switching � from 10 to 7. As predicted by Fig. 8, the travelling wave becomes unstable

and the resulting solution is a spatially homogeneous oscillation of the form described in

Sec. 3.1. The third fastest branch in Fig. 5, indicated with a dotted line in that �gure, is

unstable over the range of � values shown. In Fig. 9 we plot contours of jE(�)j (where

� = � + i!) at two di�erent points on this branch. At both points we see that jE(�)j has

a pair of complex conjugate roots with positive real part, indicating instability. Similar

results show that the �fth fastest branch in Fig. 5, indicated with a dash-dotted line, is

also always unstable (results not shown).

In the �nal section we discuss solutions that emerge for mixed feedback and see that

in some sense they can be regarded as hybrids of behaviour found for either positive or

negative feedback alone. We conclude with some discussion about potential further work.

17



t

x

 

 

100 120 140 160 180

0

5

10
0.6

1

1.4

1.8

v

Fig. 8. Simulation of (1) with negative feedback, f(v) = H(h� v), on a domain of size 10, with

periodic boundary conditions. D was switched from D = 1 to D = 100=49 at t = 120. Other

parameters are � = �d = 2, h = 1:5.

Fig. 9. Contours of jE(�)j, equally spaced from zero (blue) to 2 (red) when � = 20 (left) and

when � = 2:6 (right), for the branch shown with a dotted line in Fig. 5. In both cases jE(�)j
has a pair of complex conjugate roots with positive real part.

6 Discussion

For positive feedback we have seen that the scalar DDE (1) favours travelling monotone

front solutions, whilst for negative feedback either homogeneous oscillations or periodic

travelling waves are preferred. When delays are not present travelling monotone fronts

may still occur, but neither the homogeneous oscillations nor the periodic travelling waves

exist. Thus the presence of delays can drastically change the possible types of behaviour

in the very simple reaction-di�usion model we have studied. Interestingly for a broad

class of smooth mixed feedback (that combines negative and positive feedback) it is now

18
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Fig. 10. Solutions in the zero di�usion limit for mixed feedback. Top: �d = 3. Middle: �d = 4.

Bottom: �d = 5. Other parameters are � = 2, h1 = 0:5, h2 = 1:5.

known that (1) can support a travelling wave that is a hybrid of a monotone front and a

periodic. This non-monotone front has an exponentially decaying pro�le in one direction

that connects to a periodic oscillation in the other [13]. It is easy to replicate such solutions

in direct numerical simulations with the non-smooth choice f(v) = H(v � h1)H(h2 � v),

h2 > h1, though we have not pursued their construction here. Such direct simulations

further show that mixed feedback can lead to more complex behaviour. As an example,

in Fig. 10 we show complex oscillations for the system in the zero di�usion limit, while

Fig. 11 shows spatio-temporal chaos in the full model.

It is important to emphasise that all of our results for the scalar model (1) have used the

fact that the function f was piece-wise constant, in order to explicitly construct solutions

and determine their stability. Thus our approach naturally extends to vector systems of

the form

@v

@t
= �v

�
+D

@2v

@x2
+ F (v(t� �d); a); (43)

�a
@a

@t
= H(v � �)� a; (44)

where F (v; a) = f(v) � a or F (v; a) = f(v � a(t � �d)) for example, and �a and � are

parameters. In models like this, a can be thought of as a negative feedback term. Such

systems, with a positive feedback model for f , are known to support travelling pulses (as

19
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equation

D
d2q

d�2
� cdq

d�
� q

�
= � exp [�r=(q(� � c�d)� h)2]; (46)

on c�d < � (with a history given by (45)), and searching for the value of c for which

the solution of (46) tends to the upper �xed point q∗, which is a solution of q∗ =

� exp [�r=(q∗ � h)2]. All of the above are topics of ongoing work and will be reported

upon elsewhere.
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