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Abstract 

The dynamics near a perturbed degenerate homocfinic connection to a periodic orbit in three dimensions is modeled by 
a two-parameter map. One parameter controls the passage of the manifolds of the orbit through one another, and the other 
breaks the degeneracy and causes the manifolds to intersect transversely. An analysis of the map recovers the results of 
Gaspard and Wang (1987), relating to the accumulation of saddle-node bifurcations of periodic orbits on a single homoclinic 
tangency, and in addition shows that the local behavior of these orbits at the two tangencies can be linked together giving 
closed loops in period versus parameter plots. These analytic results are then compared with numerical results from a 
three-dimensional system of ordinary differential equations. 

1. Introduction 

A homoclinic  tangency to a periodic orbit  in three 

dimensions is responsible for complicated recur- 

rent dynamics.  Specifically, a countable infinity of  

per iodic  orbits appear in a cascade of  saddle-node 

bifurcations as the stable and unstable manifolds of  a 

l imit  cycle approach a quadratic tangency in a one- 

parameter  system. For  details see the work by Gas- 

pard and Wang [4] ,  Gavri lov and Si l 'n ikov [5,6] ,  

Newhouse [13] ,  or the summaries by Gucken- 

heimer and Holmes [9] ,  and Wiggins [ 14]. 

Most  of  these investigations have concentrated on 
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space. However, in a one-parameter system, the com- 

plete passage of  the stable and unstable manifolds 

through each other often yields two successive tan- 

gencies, the ' leading '  and ' t rai l ing '  tangencies, at two 

different values of  the parameter. The local results re- 

ferred to above can be applied to each tangency sep- 

arately, but in general the manner in which the orbits 

created at one tangency connect with those associated 

with the other is problem specific and must  be ad- 

dressed numerically. 

However, in some l imited instances by varying a 

second parameter one can bring the two tangencies 

together and l ink up the local results about each tan- 

gency. We address one such situation. We consider 

perturbations of  a degenerate homoclinic  tangency to 

a saddle l imit  cycle with posit ive multipliers.  The un- 

perturbed system has a cycle with unstable and stable 

manifolds which coincide without intersecting trans- 

versely. The perturbations we consider cause the man- 
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E = 0  

tions. Perturbations which break the axisymmetry of 
the flow cause the manifolds to intersect transversely. 
Two successive tangencies now occur and mode lock- 
ing on the torus on occur 
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2.1. Boundary conditions 
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Fig. 2. The limit cycle pierces the section ,~ at (x,y) = (0,0). 
The unstable manifold lies along x = 0, while the stable manifold 
lies along y = 0. The linear flow takes points on 2:b to ~a; the 
global flow takes points from 2;o to 2:b. 

map is constructed by composing two maps, a global 

map and a local map. The global map, G, takes points 

on ~ to Sb while the local map L takes points on ~b 
back to ~a. This is a common approach used widely 

throughout the literature (see [ 14] ). Often the local 

map is taken to be the linear approximation to the 
map induced by the flow near the limit cycle (as done 

in [4] and as we have done in Eq. (1 ) ) .  The global 

map typically is approximated by a Taylor expansion 
about the unstable manifold (points on ~a near the 

intersection o f  the unstable manifold with .S~ (the y- 

axis) follow the manifold to ~b).  
Although our local map is the usual linear approx- 

imation, the construction of  our global map differs 
considerably from the usual approach. Because we are 

interested in relating orbits associated with two tan- 

gcncies, it will be necessary to consider behavior of  

our maps on the boundaries of  the return sections. In 
previous works the dynamics of  the return maps stud- 

ied do not encounter the section boundaries and the 
complications that result do not arise. These additional 
complications limit our ability to construct an explicit 

map G of  the most general nature; however we do con- 
struct one example map G that exhibits the essential 
geometric features one would expect for the situation 
we consider. Before constructing our global map, we 
discuss these boundary conditions. 

An important feature of  the definition of  the return 
sections Xa and Xb is that the linear map L takes the 

lower boundary y = Y0 of  £a to its upper boundary 

y = ,tuYo, while L takes the right boundary x = x0 of  
2b onto its left boundary x = AsXo. Thus a point A = 

(x, Y0) E ~ belongs to the same orbit as the point 
B = (,~sX, Auy0) on the upper boundary, i.e. L ( A )  = 

B, and a similar correspondence occurs on Xb. 
We wish to ensure that the related boundary points 

A and B remain on the same orbit under the global 

map G. In general the entire lower boundary curve y = 

Y0 of  ~ under G will form a curve on ~ intersecting 

the x-axis at the point we have labeled (x0, 0).  For 

the construction of  our model map we assume that 
for small enough 6 this curve can be taken vertical 

to coincide with our definition of  the right boundary 

x = x0 of  £b- Thus G(A)  lies on the x = x0 boundary 

and its iterate LG(A)  under the local map lies on the 

left boundary x = AsXo. The point B = L ( A )  on Xa 
must get mapped under G to the left boundary point 

LG( A ) E Xb, or 

LG(A)  = G L ( A ) ,  (3) 

for all boundary points A = (x, y0) C £a- This is our 
first boundary condition. 

The map G also must satisfy a boundary condition 
on its first derivative. Consider a tangent vector v ( A )  

in the tangent space (]~2) of  the point A. Under the lo- 
cal map the vector is mapped to v ( B )  = DxL .  v (A )  = 

L. v ( A )  at the point B, where D x L  (= L) is the linear 

part of  L. Under the global map G, vectors v (A) and 

v( B) become respectively vectors DxGIA . v( A ) and 

DxG[B • v ( B )  in the respective tangent spaces of  the 

points G(A) ,  G(B)  E £b. (Here DxGIA and DxG[8 
are the linear part of  G, evaluated at A and B, respec- 

tively.) We would like the vector DxG[A. v ( A )  at the 
right boundary point G(A)  of  2b to be mapped under 

L to DxG[B. v ( B )  at the left boundary point G(B) ,  or 

DxG]B - v( B) = LDxG[A " v( A ) . (4) 

Since v ( B ) =  L . v ( A )  and B = L ( A )  this requirement 
becomes our second boundary condition 
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Fig. 3. The behavior of  the intersection of the unstable manifold 
with Xt). The parameter s = 0 for the upper three sections, while 
E > 0 below. The parameter /z  is positive for sections on the left 
while negative on the right. 

DxGIL(A)L = LDxGIA, (5) 

for all boundary 
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and minimum on the interval [Y0, &y0], as for exam- 
ple, ~uYo Ls~ 

f ( y )  = sin{27r(y - yo)/(YoAu - Y0)}, (11) 

and assume the extrema are not on the boundaries so 

that f ' (Yo) 4= 0 and f'(Auyo) 

2.4. Completing the global map 

We now incorporate into G the ability to map points 

(xa,ya) E Sa near the unstable manifold to the sec- 
tion ~b. Rather than focusing on individual points 
(xa,ya), it is geometrically beneficial to consider 
curves in 2a. Consider the following decomposition 
of 2a into curves parametrized by their intersections 

with the boundary y = Y0 at the point (2, Y0)- See 
Fig. 4. The curve with intercept (2, Y0) intersects the 

upper boundary y = AuYO at the point (As2, AuYo). 
An equation of the curve through these end points 
and others of the form (An2, anyo) is 

X = 2 (l~s/l~u) n(y) Y/Yo, (14) 

where n(y) is defined in (13). For each value of 2, 
Eq. (15) produces a curve on Ea with end points 

A ( 2 ) = (2, Yo ) and B ( 2 ) = (As2, huYo ) which lie on 
the same trajectory, i.e. L(A)  = B. Further, for each 
(xa,Ya) near the unstable manifold on 2a there is a 
unique curve passing though it possessing an intercept 
2. 

We now adjust the map for the unstable mani- 
fold (7) to map in addition the nearby curves (15) 
and hence nearby points. We need the resulting map 
G to behave properly at the boundaries. In particular 
G(A) should be on the right (Xb = x0) boundary 
of Xb while G(B) should lie on the left boundary. 
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4. Simple fixed points 
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The simplest periodic orbits of the flow are the tra- 
jectories which link up with themselves after only one 
pass through the global region of the flow. These cor- 
respond to fixed points (x, y) c Sa of our mapping 
which satisfy (x, y) = LInG(x, y) ,  or more explicitly 

x = A~'qS(y), 

y=A~'  { [/z + y.~(x,y)]  Y/Yo + e f ( y )  } . (20) 

The substitution of the first equation x = AsmqS(y) into 
the second equation yields an equation for y decoupled 
from x, 

y = A ~ ' { ( t x + y X o A n s ' ) y / y o + e f ( y )  } . (21) 

Notice that because 2(x,  y) = x0A~ m is constant for 
fixed points of a given m on Na, these fixed points lie 
on the same curve (15). 

For graphical interpretation, Eq. (22) can be re- 
expressed as 

fly = - e f ( y ) ,  (22) 

where 

fi = Iz/Yo - (Y0/Au m - yxoAT') lYo. (23) 

We are primarily interested in the behavior of the fixed 
points as /z is varied through zero creating and de- 

stroying the primary tangencies. For this reason we 
continue to consider e fixed and/z variable. 

A plot of fly and - e f ( y )  as functions of  y on 
the same graph is shown in Fig. 5b. The intersections 
of the two curves correspond to fixed-point solutions 
to (23). As /z varies from positive to negative for 
large enough m the slope/3 of the curve fly also goes 
from positive to negative. A fixed point first appears 
as the curves become tangent at a positive fl value. 
This fixed point splits in two after the tangency as/3 
decreases. At /3 = 0, one of the fixed points passes 
through the top boundary y = Auyo of the return sec- 
tion, and another fixed point simultaneously appears 
at the lower boundary, y = Y0. Since the linear map L 
maps the lower boundary point to the upper, the two 
fixed points are identified with the same periodic cy- 
cle in the flow. As/3 decreases further the two distinct 

7 

fixed points merge again in a second saddle-node tan- 

gency and disappear. Thus as /x  varies from positive 
to negative, two cycles are created in a saddle-node 
bifurcation and then the same two cycles merge and 
are destroyed in another saddle-node bifurcation. 

Now we find where the saddle-node bifurcations 
occur relative to the primary homoclinic tangencies. 
The saddle nodes occur when 

fl = - e f '  (y)  , (24) 

and a simple computation shows that the correspond- 
A m ing fixed point ( s ~b(y), y) is also given by a solu- 

tion of Eq. (19). (Thus the fixed point at the saddle- 
node bifurcation has y = y*, the same y value yielding point3cies. 
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Fig. 6. Shown in (a) are curves of saddle-node bifurcations in the (p., e) parameter space which converge upon the leading tangency 
curve (bold curve, ~ > 0) and the trailing tangency curve (bold curve,/x < 0). Shown in (b) is a sketch of period T versus /z for the 
limit cycles along a parameter path with fixed E (dashed line shown in (a)). The leading tangency occurs at/x2, while trailing occurs at 
/t£ 1. For both (a) and (b) auAs < 1. 

imately toroidal-shaped phase space region bounded 
by the stable and unstable manifolds of  the primary 
limit cycle. To smoothly deform a simple cycle in such 
a way as to increase or decrease the number of  turns it 
makes about the primary cycle would force the simple 
cycle to cross at least one of  the invariant manifolds 
of  the primary limit cycle- -something that cannot oc- 

cur. Therefore orbits represented by a particular bub- 
ble cannot be smoothly deformed by the variation of 

parameters (/x and E) into orbits represented by other 
bubbles, ensuring the isolation of  the bubbles in Fig. 6. 
However, should the parameters of  a system stray far 
enough from the/x  = 0, E = 0 case it is possible, if  not 
likely, that the global manifolds of  the primary cycle 
will evolve far enough from the assumed configura- 
tions depicted in Fig. 1 that the geometry no longer 
provides a sufficient constraint and orbits from one 
bubble might deform smoothly into orbits from other 
bubbles. 

5. Stability of simple fixed points 

An eigenvalue, A, of  a simple fixed point (x,  y) E 
Xa given by (21) satisfies 

A 2 - TA + D = 0 ,  (26) 

where 

T = + D ,  (27) F~(y)  

and 

F ~ ( y )  = A~ { (~  + ya~ 'x0)/Yo + E f ' ( y )  } . (28) 

From the elimination of  fl  between Eqs. 
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where 

Q = 2 - 2 y ( A ~ A u ) m ( x o l o g A s ) / ( y o l o g A u ) .  (31) 

Note that Q is positive and recall that fixed points 

satisfy Eq. (23), f l y  = - • f ( y ) .  For large m Eq. (3 l )  
approaches Eq. (25) and graphically the period- 

doubling fixed point moves closer towards the point 
of saddle-node tangency. To determine which of the 
two orbits appearing after the saddle-node bifurcation 
undergoes period doubling we refer to Fig. 5b. The 

intersection point at which the slope fl of the straight 
line is less than the slope of the curve - e f t ( y )  corre- 
sponds to the fixed point that period doubles (as given 
by Eq. 31). Thus the left intersection point on the 

fl <flsn curve of Fig. 5b undergoes period doubling. 
In summary, at the first saddle node (/x > 0) the sta- 

ble orbit has a smaller y value than the saddle and then 
shortly loses stability through period doubling. The 
now unstable orbit eventually becomes stable again in 
a reverse period-doubling bifurcation just prior to dis- 
appearing in the final saddle-node bifurcation (/x < 
0). During the approach to the final saddle-node bi- 
furcation the node orbit now has the larger y value 
(independent of the sign of • ) .  

6 .  T h e  6 = 0 c a s e  

An important special case to consider is when the 
stable and unstable manifolds have a "flat" tangency, 

as when • = 0. In the flow to be considered in Sec- 
tion 7 the manifolds behave this way as a consequence 
of rotational symmetry. In this flow symmetry allows 
for the variable associated with the phase of the limit 
cycle to decouple from the equations for the remain- 
ing two variables. This effectively reduces the three- 
dimensional flow to a flow on a plane. (This reduc- 
tion to a planar flow arises frequently in the analy- 
sis of  many normal forms [9] .) The upper sketch of 
Fig. 1 illustrates the relation of such a planar flow to 
the three-dimensional flow at the homoclinic connec- 
tion. In the planar flow the connection is a homoclinic 
loop to a saddle fixed point. It is well known that ap- 
propriate perturbations to a planar flow with a homo- 
clinic loop give rise to a limit imit connectiow
(to ) Tj
11.04 t1w
(mmv 1 1 rg
0.hcinic ) Tj
97c9e. Tj
19.68 0 TD
1 1 1 T0f Tw
(limit ) Tj
21.84 it 
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7. A numerical example 

Laing [ 12] studies the following equations: 

c~ =q07 + io9 ÷ az + KI Iql 2 q-K2zq) q- K 3 Z  3 , 

= v  - z 2 -  ]q l  2,  ( 3 3 )  

where q E (2; 
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Fig. 7. Bifurcation set and phase portraits for Eqs. (35).  The horizontal axis is r/, while the vertical is p - r/2/16 + r/f4. The phase 
portraits have r plotted horizontally and z vertically. To obtain the full three-dimensional flow, each sketch must be rotated about the 
z-axis (the vertical line at the left of  each sketch). Parameter values are o~ o~er 
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Fig• 9. Boundaries of the resonance tongues with rotation numbers 1/5, 1/6, I /7  and I /8,  together with the edges of the homoclinic 
region. The tongues are seen to accumulate on the edges of the homoclinic region (shown dashed) as the rotation number tends to zero. 
Parameter values and axes are the same as in Fig. 8, 

third parameter in the flow ~7 does not have a direct 
analogue in the map. The variation of this parameter 
moves the system away from the Takens-Bogdanov 

this 

7.2. Breaking the axis-invariance 

is therefore invariant. Thus the closed loops in Fig. 10 
may not be surprising. However, the trajectories of the 
periodic orbits of Fig. 10 lie in a doughnut region of 

phase space that is well separated from the z-axis as 
noted in Section 4. Thus whether or not the z-axis is 
invariant is not directly relevant for the behavior of the 
periodic orbits formed in the homoclinic bifurcation of 
the primary cycle. This can be demonstrated by setting 
K3 v~ 0 and producing a plot similar to Fig. 10. This 
is done in Ref. [ 12] and the results are qualitatively 
identical to the axis-invariant case, i.e. the periodic 
orbits form closed loops in period-parameter space• 

8. Concluding remarks 

We have considered a homoclinic tangency to a limit 
cycle in which the stable and unstable manifolds pass 
through two successive tangencies. The two tangen- 
cies occur close together in parameter space and we 
have been able to connect up orbits appearing at one 
tangency with those at another. For both the numerics 
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Fig. 10. Plot of  period versus ~, at r / =  - 5 . 5  for periodic orbits corresponding to tongues with rotation numbers 1/5, 1/6, 1/7 and 1/8, 
for Eqs. (34) with parameters as in Fig. 8. (The 1/5 tongue has the lowest period, the 1/8, the highest.) What appear to be straight lines 
are actually closed loops. 
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