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Abstract

In this paper we discuss the types of stable oscillation created via Hopf bifurcations for
a ring of identical nonlinear oscillators, each of which is diffusively and symmetrically
coupled to both its neighbours, and which, when uncoupled, undergo a supercritical
Hopf bifurcation creating a stable periodic orbit as a parameter, A, is increased.

We show that for small enough coupling, the only stable rotating waves produced
are either one or a conjugate pair, depending on the parity of the number of oscillators
in the ring and the sign of the coupling constant, and that the magnitude of the
phase difference between neighbouring oscillators for these rotating waves is either
zero (i.e. the oscillators are synchronised) or the maximum possible, depending on
the sign of the coupling constant. These branches of rotating waves are produced

supercritically.



1 Introduction



determine the types of oscillation produced. This was the approach used by Collins
and Stewart [3] in relation to the modelling of animal gaits. These authors used

results from



2 Presentation of system

We assume that our system of N coupled oscillators in a ring is governed by equations

of the form
. dzj : _ _ :
G =8 = (i) + Falz5, %) + B2, ) + (6 +i6)(22 — 2301 — 2j-1)
(1)
where z; € C; A\, Q, ¢,,¢; € R, 12 = —1, the subscripts (which label the oscillators) are
taken mod N, and F; and F3 contain the second and third order terms, respectively,

in the Taylor series expansion of the vector field of an uncoupled oscillator. To be

more explicit, we write
Fy(zj,2) = alzf- + azziz; + agéf
and
Fi(zj,2;) = Bz} + Pazizj + PazZ; + PaZ;

where the a’s and ’s are complex constants. We take A as our bifurcation parameter,
which we assume to be close to zero. The a’s and 3’s will typically depend on A, but
because we are only concerned with the case |A\| < 1, we fix them at the value they
have when A = 0.

We assume that each uncoupled oscillator undergoes a supercritical Hopf bifurca-
tion as A increases through zero. This means that the normal form coefficient, a, for

each oscillator is negative. For a system

x 0 —w x x,
_ N f(z.,y) ey € R

y w 0/ \y 9(z,y)
with f(0,0) = ¢(0,0) =0 and Df(0,0) = Dg(0,0) = 0 at a simple Hopf bifurcationky , nifi-¢ Ié¢ B






the other components of w are dominated by exponential contraction onto the centre

manifold. We know from (3) that
N
WN = Z %5y
=1

so using this and (1) we have

|
™=
Qe

wy =
7=1
N
= D AN+ i)z + Fo(2,2) + Falz, 7)) + (& +16)(22 — 2j-1 — zj1) }
7=1
N
= (A +iQuwn + D {Fa(z;, 7)) + Fs(25, %)} (4)
7=1
. Fy(wn, wn) Fs(wy, wn)
= ()\—I—ZQ)wN—I—T—I—[...Q...] N7 +[...3...]
where [...2...] represents second order terms in wy, wq, ... ,wy_1,wy_7and [...3...]
represents all cubic terms that include at least one of wy,wq,... ,wy_1,wn_1. The

second and fourth terms in the last line of (4) were obtained by using the inverse of

A

?

so that

=2 A =52 U, (5)

and substituting into the expressions for Fy(z;,z;) and Fs(z;, ;).

There is a subtle point here regarding the difference between [...2...]and [...3...].
We might expect there to be second order terms in (4) of the form wywy, wywg, Wywy
or wywy, for some k # N, and when we then perform a centre manifold reduction (in
which we write wy and wy, as a sum of second—order terms in wy and wy) these terms
will be third order in wy, wy. However, it is possible to calculate the coefficients of
the second order terms in wywyg, wyWE, Wywy and wywy for any k& # N, and they are
all zero. Hence, when we perform the centre manifold reduction all terms in [...2...]

are fourth order in wy,wy and will therefore be ignored. For a similar reason, all



terms in [...3...] will be of order at least 4 (possibly up to 6) and will similarly be

ignored. Thus, after performing the centre manifold reduction we can write (4) as

Fy(wy,wy)  Fs(wy,on)

- N 1 O(funl?) (6)

Ii)N = ()\ + iﬂ)w]\f +

Comparing this with (1) at (e, ¢;) = (0,0) we see that to third order they are identical
except that the coefficients of the second order terms in (6) have been divided by N
and the third order ones by N?. Going back to the expression for a (equation (2)),
we see that the value of a for (6) is equal to that for an uncoupled oscillator divided
by N2. Since only the sign of a is important, we see that in the dynamics restricted
to the centre manifold, (6), there is a supercritical Hopf bifurcation as A increases
through 0 when ¢, < 0. To see how this manifests itself in the oscillators, we use the
inverse of A, (5). Since wy is small at the onset of oscillation and the wy, for k # N
are second order in wy, we can ignore their contribution to the z;. From (5) we see
that z; ~ wy for all 7, i.e. this branch of orbits manifests itself as the completely

synchronised state, z; = zj for all j, k. The next case we do is ¢, > 0, N even.

4 ¢ >0, N even

In this case the first Hopf bifurcation to occur as A is increased is the simple one for
J = N/2 at A = —4e,. The centre manifold is in the wyy, direction and as above, the
dynamics in the other directions of w are dominated by exponential contraction onto

the centre manifold. From (3) we have

N N
wnp =Y (Ax;) 7= Y (-D)N
7=1 7=1



so using (1) we obtain

N
Wy = Z YNt
v
= Z N ]+1{ A+1iQ)z; + Fa(zj, 2;) + Fs(z5, 2;) + (& +1€:) (225 — 2j41 —
— N |
= PN +iQ+ 4o +ie)wng + D ()N Fa(25, 7)) + Fa(z5, 7))
7=1
= A4+ +4(e + iq)]wN/z
1
+ N {QCYle/sz + az(wnyjwn + Wy pwN) + 26!37«7)N/27~71N]
Fs(wnya, Wny2)
+ .20+ z/v22 24130
where [...2...] now represents second order terms in wy, wy, . ..

factors of wpy/; or w2, and [...3...] represents cubic terms not composed exclusively

-]

of wy/y and wyyy. After performing the centre manifold reduction, termsin [...2..

and [...3

..] will be of order at least 4 in wyy, and Wy,

zj-1)}

,wy, wy that have no



Thus (9) becomes

[20'le/2 + O'QTIJN/Q] X [)\ + 1) + 4(






relevant.

The normal form has three types of nontrivial solution:
1. uy = uy, which we associate with the Zy(x) orbit,
2. u; = —ug, which we associate with the Zy(x, ) orbit, and

3. either (uy,uz) = (uq,0) or (uy,uz) = (0,uz), both of which we associate with

ZN orbits.

The bifurcation set for the normal form (10) is shown in Figure 1, which is reparametrised
version of Figure 3.1 in Ch. XVIII of [6] showing how the bifurcation diagrams for (10)
depend on the real parts of B and C. See [6] for more details.

Defining £ = éNV-1/2 and ¢, = €N+D/2 where ¢ = ¢?™/N | we have, using (3)

N
= Efy_kﬂzk and w, = ZfN R,
k=1
Differentiating the first of these with respect to time and using (1) we have

N
wy = Y ENTHH(N i)z 4 Falzy, 25) + Falz;, 2) + (6 +1€6)(22) — 2541 — 2j41) )
k=1

{A+iQ + 2(e, + €)1 + cos (7 /N)] }w, + Z fT_Hl{FQ(Zk, zr) + Fs(zk, 2x) }

= {A+1Q+2(e +1¢)[1 + cos (7 /N)]}w, - (11)
+  [Rajwgwn + ag(wywn + wews) 4 203w, 0N 1] /N
+ [2oqwpw; + az(wywn_1 + Wywn) + 2azwywy] /N + [ .0i .. ]
+ f; [wiiw, + 2wywyw,] + [...dii...]
where [...7i...] represents second order terms with no factors of w,, w,,w, or w,,

and [...717 .. .] represents cubic terms excluding those of the form w;

W, and w,w,w,.
When the centre manifold reduction is performed terms in [...7¢...] and [...e0...]
will be of order at least 4 in |w,| and |w,]|, or if not, can be removed with normal
form transformations, and will thus be ignored from now on. We obtain an expression

analogous to (11) for w,, with w, and w, exchanged, as expected from the symmetry

of the problem.

12



The next step is to perform the centre manifold reduction in order to get expres-
sions for wy,wy and wy_; in terms of w,, w,, w, and w, so that we can substitute

them into (11). We write

wy = f(wy, Wy, wy,wy) = 717“”; + 2wy, + Y3Wpw, + Yawyw, + 75@;
+ VoW, + Y7,y + YsW, + Yow, W, + V10w,

wy = g(wy, Wy, Wy, W,) = Qlw; + Oyw,w, 4+ Osw,w, + O4w,w, + 95711; (12)
+  Oevyw, + 070,10, + Ogw? + Ogw,w, + O19w]

_ - N 2 - - 2
WN—_1 = h(wy, Wy, Wy, Ww,) = V1w, + VawWpW, + V3Wyw, + Vawyw, + V5w,

- [ 2 - —2
+ vew,w, + vrw,wy + vgw, + vow,w, + VoW,

where ~q,...,v19 € C are unknown coefficients. We find them in the usual way
— writing equivalent expressions for each of wy, wy and wy_; and then equating
coefficients of like powers of w,, w,, w, and w,. By substituting the expressions (12)
into (11), we can see that after the centre manifold reduction has been performed the

coefficient of the term in ijq in (11) will be

- ﬁ 4 20109 + 042(1% + 78) + 23010

= 1
= R (13)
while that of the term in w,w,w, will be

O = % n 20105 + azfy + 20176 + as(vg +63) + 20307 (14)

N2 N
(We have made the correspondence u; = w, and us = w, for comparison between (11)

and (10).) Actually doing the centre manifold reduction, i.e. finding 71, ... , 10, we

13



see that at the double Hopf bifurcation (i.e. when A = —2¢,[1 + cos (7 /N)])

_ lea 2a 12
b = o2, [QQN(HCOS(W/N))]+0(|er,ez|)
_ _tea [
BE TN T laen

+ [220‘1 (1 4 2cos (x/N) + cos (QW/N))] +0(jer &)
NQ?
B 1003 203
Vg = SQN+ , [992N(cos(7r/N)—|—c0s(27r/N))]

(cos(w/N) + cos (QW/N))]

N [;;VO;;’Z (cos (27 /N) — 2 cos (= /N) — 3)] +0(ler, i)
0 = o b e [ i1 4 cos (n/ V)] + Ofler, i)
Jo = ot [ aan(cos (1/N) + cos (2/N)]
b (eos (2n/N) = ] 4 Ol &)
o= ot g[S (cos (x/N) + cos (25/N))
o [t (cos (2n/N) = ] + Ofler, )
0 = st e [ (14 cos (1/V))] e[S (1 4 cos (/W) 4 Ol )
2% g 4ovs —8tag

(1 + cos (W/N))] Fe [ 229301 4 cos (F/N))] +0(jer, &)

br = oyt [9Q2N INQ2

for small |¢,|, |¢;]. Substituting these expansions into the expressions for B and C' (13-

14) we obtain

Infore) -

Q
N292 [2]%6{&1@2} <2 + 3 cos (%) +cos (%))
+  2]ay)? (1 + cos (%)) + % (COS <%) cos (%))]

s [prmtmant (14205 (1) 4 cos (57))] + Ollersil)

Re(B} = = [Re%} _

14



and

RefC) = %[Re{ﬂz}— o

T 27
+ NZQ2 [4Re{alozg} <2 + 3 cos <N> + cos <N))
+ 2|as)? <1 + 2 cos <1) + cos (21)) + les[* <1 + cos (1))]
N N 9 N

o [1mtean} (14 2c0s (£) 4 cos () )] + Oller. )

Looking at these expressions when ¢, = ¢; = 0, we see that for ¢,, ¢; small enough, we

are in the region Re{C'} < Re{B} < 0 of Figure 1 (as

Re{f} — 7””{310‘2}

and thus there is a supercritical Hopf bifurcation to the Zy oscillation as A increases

]m{alaz}]

a <0)

through —2¢,[1+ cos (x/N)]. The Zx branch corresponds to two types of oscillation,
depending on whether solutions of (11) and its symmetric counterpart are of the form
(wy,w,) = (w,,0) or (w,,w,) = (0,w,). Using (5) we see that if w, = 0 then z; ~

f];_lwq, i.e. zj11 = (£-)z;, so the phase difference between neighbouring oscillators is

(,PO0yL 9AL ¢ yARR B BoR3 . s CIMTL R



because here we have the creation of either a stable Zy(x) orbit or a stable Zy(x, 7)

orbit in the double Hopf bifurcation. A simple rearrangement of the above expressions

for Re{B} (15) and Re{C} (16) gives

Re{C'} = 2Re{B} (17)
o i et (o () 1)+ 388 1 () ot

so by choosing various parameters correctly, it may be possible to push the normal

form for the oscillators from the line Re{C} = 2Re{B} < 0 that we know we are
on for ¢, = ¢; = 0 across the boundary Re{C} = Re{B} < 0 by increasing ¢,, as
shown schematically in Figure 2 (compare with Figure 1, which shows the bifurcation
diagrams in each sector). (Note that as N increases, the coefficient of the term in
€ in (17) decreases, all other things being equal.) We demonstrate this transition
below in an example for N = 3, the smallest number of oscillators to have the three
different types of orbit created in a double Hopf bifurcation.

We are in the region ¢, > 0, and we want to increase Re{C}, so we set ay = 0.

For simplicity we also set €;, 31, 35 and 34 to be zero. The example we use is
Zi = (A4 L5e)z; — 0.72]2 + 22? — |zj|22j +€(22; — zj41 — 2j-1) (18)

for j = 1,2,3 and the subscripts are taken mod 3, which corresponds to equation (1)

with Q@ = 1.5,a7 = 0.7, a3 = 2,3, = —1 and ¢, = €. For this system,

heiB} = _é 3 x61.52 [4 X922 (COS (g) oos (%))] +0(e) = _é +0()

so using (17), to first order in € we should get a transition from Hopf bifurcation to

a stable 23 orbit to Hopf bifurcation to a stable Zj orbit of some kind when
Re{C} —2Re{B} = —Re{B}

1.e.

5 ()] s [ (e ()] -
N2 | 9 CCAN)| Tox1m2| 9 “C\3 ~ 9

ie. € =27/64 ~ 0.42. That this transition does occur is demonstrated in Figure 3,

where we show the type of orbit that is stable near the double Hopf bifurcation for (18)

16



as a function of e. This clearly shows that for e <~ 0.0 gF E P
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List of Figures

Generic bifurcation set for the normal form of the Dy symmetric Hopf
bifurcation (10) for N > 3, N # 4, after Figure 3.1, Ch. XVIII of [6].
Within each sector of the (Re{C'}, Re{B}) plane is a schematic bi-
furcation diagram with Re{u} horizontally and some measure of the
orbit vertically. Solid lines refer to stable solutions and dotted to un-
stable. Note that for any branch to be stable all must be supercritical,
and then at most one branch is stable. Fifth—-order termsin the normal
form may interchange the Z»(x) and Zz(k, 7) orbits. We have assumed
that the origin is stable for Re{p} < 0. (We use “supercritical” and
“subcritical” to refer to the direction in which a branch of orbits is

created as Re{u} is increased: supercritical branches are created as

Re{p} is increased, while subcritical are created as Re{y} is decreased.) 21

Schematic diagram showing how it might be possible to move from the
line Re{C'} = 2Re{B} < 0, which we know we are on at ¢, = ¢, = 0,
across the line Re{B} = Re{C'} < 0 by increasing ¢,. Compare with
Figure 1, which shows bifurcation diagrams for the relevant sectors.

Transition from Hopf bifurcation to a stable Zs orbit to Hopf bifur-
cation to a stable Zy(k,7) orbit as € is varied in equation (18). In
region F the Zs orbit is stable, and in region G, the Zy(k, ) orbit is
stable. There is non—periodic behaviour in the wedge H. The vertical

coordinate is the distance in A from the Hopf bifurcation. . . . . . . .
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- Re{C}

Figure 2: Schematic diagram showing how it might be possible to move from the
line Re{C} = 2Re{B} < 0, which we know we are on at ¢, = ¢ = 0, across the
line Re{B} = Re{C} < 0 by increasing ¢,. Compare with Figure 1, which shows

bifurcation diagrams for the relevant sectors.
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Figure 3: Transition from Hopf bifurcation to a stable Z orbit to Hopf bifurcation
to a stable Zy(k,7) orbit as € is varied in equation (18). In region F the Z orbit is
stable, and in region G, the Zy(k, ) orbit is stable. There is non—periodic behaviour

in the wedge H. The vertical coordinate is the distance in A from the Hopf bifurcation.
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