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locality of neural field models. Even though the calcu-
lation uses information from only the leading edge of a
wave it gives wave speed predictions in very good agree-
ment with those from direct numerical simulations. In
section IV we consider a Heaviside firing rate function
and focus on time-independent spatially varying solu-
tions and show how to determine existence and stability
of pinned front solutions. A fully nonlinear analysis of
traveling fronts is developed in section V based on track-
ing the evolution of level set contours of the neural ac-
tivity. For a Heaviside firing rate this interface dynamics
simplifies considerably and the dynamics for a traveling
front is determined by a single scalar nonlinear ordinary
differential equation (ODE). For weak modulation this
ODE can be analyzed using standard perturbation argu-
ments and the wave speed of a pulsating front is easily
calculated. Once again the theory is in excellent agree-
ment with numerical simulations and, in contrast to re-
sults obtained using homogenization theory, can describe
wave behavior even when the period modulation of the
spatial kernel is not rapid. Finally in section VI we sum-
marize and discuss possible extensions of this work.

II. THE MODEL

Many current coarse grained models of neural tissue
trace their origins back to seminal work in the 1970s by
Wilson and Cowan [13, 14] and Amari [15, 16]. In one
spatial dimension the simplest single population model
that describes the evolution of neural activity u = u(x, t),
with x ∈ R and t ∈ R+ is

ut = −u+ ψ, ψ(x, t) =

∫ ∞

−∞

dyW (x, y)f ◦ u(y, t). (1)

The function f represents the firing rate of the tissue and
is often chosen to have a sigmoidal form. The weight ker-
nel W (x, y) represents anatomical connectivity between
points x and y in the tissue and the presence of this func-
tion means that the model has a non-local structure. For
a more comprehensive discussion of such models, their
generalization and their use in neuroscience we refer the
reader to [17]. In this paper we mostly focus on a very
specific form of heterogeneity, namely one where the con-
nectivity has the following product structure:

W (x, y) = W (|x − y|)J(y), J(y) = J(y + σ), (2)

where J is some σ-periodic function. The use of period-
ically modulated translationally-invariant kernels of this
form is particularly relevant to modeling primary visual
cortex, which is known to have a periodic micro-structure
on the millimeter scale, reviewed in some detail in the pa-
per by Bressloff [6]. For later convenience we shall use
a Fourier representation for the real periodic function J
and write
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FIG. 2. (Color online). A plot of the wave speed estimate c
as a function of λ defined by detA(c, λ) = 0 with N = 20 for
three values of ǫ. ǫ = 1.5 (red, dash-dotted), ǫ = 0.5 (green,
dashed) and ǫ = 0 (blue, solid). Other parameters are γ = 2,
J0 = 1, σ = 2π.

and the fixed point at u = 0 is unstable for small ǫ when
−1 + γJ0 > 0 (as can be seen by considering spatially
coherent perturbations of the form u(x, t) = β exp(λt) in
equation (6) and demanding that Re λ < 0).

B. Numerical Results

A plot of c as a function of λ, defined by the relation
detA(c, λ) = 0, is shown in Fig. 2 for various values of
ǫ. Here it can be seen that c = c(λ) has a well defined
minimum, c∗
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where

L(η) =

∫ ∞

0

dyW (y)J ′(η − y) =
dq(η)

dη
. (28)

Hence, solutions with dq(η)/dη < 0 are stable and those
with dq(η)/dη > 0 are unstable. For the example of
Fig. 5 we see from Fig. 6 that of the two possible solutions
it is the one with largest η that is stable.

V. INTERFACE DYNAMICS

Motivated by the form of the pulsating front in Fig. 1
we seek to describe the properties of this solution solely
in terms of the behavior at the front edge which separates
high activity from low. If the front is not pulsating (which
is the case in the absence of period modulation of the
connectivity) then in a traveling wave frame (of the same
speed as the wave) the rising edge of the front may be
identified with a single (traveling wave) co-ordinate. For
a pulsating front this point is no longer stationary in time
and instead oscillates. We now show how to derive the
dynamics for this interface between high and low activity
states.

In a co-moving frame the model (1) takes the form
u = u(ξ, t) where ξ = x− c0t for some fixed c0 and

−c0uξ + ut = −u+ ψ, (29)

where

ψ(ξ, t) =

∫ ∞

−∞

dyW (ξ + c0t, y)f ◦ u(y − c0t, t). (30)

We define a moving interface (level set) according to

u(ξ0(t), t) = h, (31)

for some constant h. Here we are assuming that there is
only one point on the interface (though in principle we
could consider a set of points). Differentiation of (31)
gives an exact expression for the velocity of the interface
in the form

ξ̇0 = −
ut

uξ

∣∣∣∣
ξ=ξ0(t)

. (32)

Focusing now on the case of a Heaviside firing rate with
f(u) = f2(u) means that for a pulsating front solution
with u > h for ξ < ξ0 (30) takes the simple form

ψ(ξ, t) =

∫ ξ0+c0t

−∞

dyW (ξ + c0t, y). (33)

A. Perturbation analysis

Consider a perturbation around the unmodulated case
and write W (x, y) = W (|x − y|)[1 + ǫK(y)] (K(y) =

K(y+ σ)) for some small parameter ǫ. For ǫ = 0 there is
a traveling front q(ξ) given by the solution of

−c0
dq

dξ
= −q + ψ, ψ(ξ) =

∫ ∞

ξ

dyW (|y|), (34)

where the speed c0 is determined by q(0) = h. For small
ǫ we assume that the slope of the traveling front varies
sufficiently slowly so that we may make the convenient
approximation uξ|ξ=ξ0(t)

= qξ|ξ=0. In this case we have,

using equations (29) and (34), that

ut|ξ=ξ0(t)
=

∫ ξ0+c0t

−∞

dyW (ξ0 + c0t, y) −

∫ ∞

0

dyW (|y|),

(35)

uξ|ξ=ξ0(t)
=

1

c0

(
h−

∫ ∞

0

dyW (|y|)

)
. (36)

Substitution of equations (35) and (36) into equation (32)
gives

ξ̇0 = ǫc0

∫ ∞

0
dyW (|y|)K( |
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FIG. 11. (Color online). A stationary solution of (1)-(2) for
f = f1. Parameters are γ = 0.95, J0 = 1, σ = 2π, ǫ = 0.3.

point at which q(y) = h. Comparing Figs. 4 and 7 it is
interesting to note that the speed of a front increases as σ
is increased when f = f1 and decreases as σ is increased
when f = f2. This demonstrates that the qualitative
behavior of a model such as (1)-(2) can depend on the
exact form of the nonlinear function f . The only rea-
sonable way to compare results obtained for f = f1 and
f = f2 would be to take γ → ∞ in f1 and h → 0 in
f2. However, the result would be f(u) = H(u), the un-
shifted Heaviside, for which the speed of a front in the

unmodulated case is infinite [c0 = (1 − 2h)/(2h)]. Thus,
a meaningful comparison is not really possible and our
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