

The importance of different timings of excitatory and inhibitory pathways in neural field models

t tt t t t t t t t t t tt t t tt t t t t t t t t t t t t t t t tt t t t t t (t

Keywords:

Introduction

				t		t		t	t		(&
		t	&	t 1	I				t			&
	&			&						t		t tt
		t	t				tt	ī	t t	t	t	
tt				t	t	1	t t				t	
t t		t				t		t			t	
t		t t			t		tt	t	t	tt		t
		t	t (t &		t	t		&			t
t		t	t	t							t	t t
t	t	(&								t t	
t t		t	t				t	t				t t
t		(t	&	t	t			t		t		
			t	t	t				t		t	t
			** *		t		t	t				t t
	t		t		L		Ľ	L		t		

t O &

$$(\mathbf{x} \ast \mathbf{x} (\mathbf{y})) = \int \mathbf{x} (\mathbf{x} (\mathbf{y}), -\mathbf{y}) \mathbf{x}$$

$$(,) = \frac{1}{(-\infty)} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(\omega + \omega)} (, \omega - \omega),$$
 (

t t

$$(,\omega) = (,\omega \cdot (,\omega).$$

tt tt tt tt t

$$(, \omega = (\omega/v) + (\omega/v) - (\omega/v) , \qquad ($$

$$(, \omega = \frac{\Gamma (+ \omega/\omega)}{(+ \omega/\omega) + \frac{1}{2}}, \qquad ($$

$$\omega = v / (1 + \omega/\omega) + (1 + \omega) + (1$$

$$\begin{array}{cccc} \partial & \left(+ \left(\omega \right) - v \right) \right) \\ \mathbf{t} & \mathbf{t} \\ \mathbf{t} & \mathbf{t} \\ \mathbf{t} \end{array} \right) \left(\mathbf{t} & \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{array} \right) \left(\mathbf{t} & \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{array} \right) \left(\mathbf{t} \\ \mathbf{t} \end{array} \right) \left(\mathbf{t} \\ \mathbf$$

Stationary bump solutions

$$\mathcal{A}(= \begin{bmatrix} (, & (\Delta, \\ (\Delta, & (, \end{bmatrix}), \\ (\Delta, & (, \end{bmatrix}),$$
()

$$\begin{aligned} \mathbf{f}_{\mathbf{x}} &= \mathbf{f}_{\mathbf{x}} \left(\mathbf{x}, \mathbf{x} - \mathbf{f}_{\mathbf{x}} \right) \\ \mathbf{f}_{\mathbf{x}} \left(\mathbf{x}, \mathbf{x} - \mathbf{f}_{\mathbf{x}} \right) \\ &= \frac{1}{|\mathbf{x}|^{2}} \mathbf{f}_{\mathbf{x}} \left(- \mathbf{f}_{\mathbf{x}} \right) \\ &= \frac{1}{|\mathbf{x}|^{2}} \mathbf{f}_{\mathbf{x}} \left(- \mathbf{f}_{\mathbf{x}} \right) \\ &= \mathbf{f}_{\mathbf{x}} \left(\mathbf{x} - \mathbf{f}_{\mathbf{x}} \right) \\ &= \mathbf{f}_{\mathbf{x}} \left(\mathbf{x}$$

t t

$$\hat{\boldsymbol{x}}(-) = - + / \boldsymbol{x}. \tag{}$$

ttt t /(

$$\mathcal{L}'(\mathbf{r}) = \mathcal{L}(\mathbf{r}) - \mathcal{L}(\mathbf{r}) - \Delta - \Gamma \quad (\mathbf{r}) - \Delta \quad . \tag{(1)}$$

 $\mathbf{v}_{1} = \mathbf{v}_{1} = \mathbf{v}_{1}$

v ttt tt tt tt tt tt = = v =t tt t t t t tt t t tt t t t t t t t tt (t t t t t t t t t t • = t t v t t v t t t t t t t t t t t $t \quad v = . (t \quad v = . (t \quad t \quad t \quad t \quad t$

$$\mathcal{E}(= \frac{1}{(+ /)} + \frac{1}{| (+ /)|} \{ (+ /) (\Delta - (/) (-) (\Delta - \Delta / v) \}$$

t t

$$(\Delta (- \mathbf{I} - (\omega))) (\Delta - (\omega)) = (\omega)$$

 $f = \omega \Delta / v$ t t $(\Delta \neq (\Delta - (L t t)))$

$$(\Delta - \mathbf{I} - (/ \mathbf{I} = ($$

t

t t t

t tt

 t
 t
 t
 t

 t
 t
 t
 t

 t
 t
 t
 t

 t
 t
 t
 t

 t
 t
 t
 t

 t
 t
 t
 t

 t
 t
 t
 t

 t
 t
 t
 t

 t
 t
 t
 t

 t
 t
 t
 t

 t
 t
 t
 t

 t
 t
 t
 t

 t
 t
 t
 t

 t
 t
 t
 t

 t
 t
 t

 t
 t
 t
t t t t

Travelling wave solutions

 $I_{\mathbf{x}}^{\prime}(\mathbf{x}, \mathbf{y}) = \int_{-\infty}^{\infty} |\mathbf{x}|_{\mathbf{x}} \int_{-\infty}^{\infty} |\mathbf{x}|_{\mathbf{x}} \int_{-\infty}^{\infty} |\mathbf{x}|_{\mathbf{x}} \langle \mathbf{x}|_{\mathbf{x}} \circ |I_{\mathbf{x}}^{\prime}(\mathbf{x}-\mathbf{x}+\mathbf{x})|_{\mathbf{x}} + ||\mathbf{x}||/v_{\mathbf{x}}, ||\mathbf{$

t ttt t t t tt (& tt t t t tt tt t

$$\mathbf{t} \quad \mathbf{t} \quad$$

$$\mathcal{F}_{\mathbf{x}}(\mathbf{x}_{n},\mathbf{x}_{n}) = \int_{\mathbf{x}_{n}}^{\mathbf{x}_{n}} (\mathbf{x}_{n},\mathbf{x}_{n}) = \frac{\Gamma_{\mathbf{x}_{n}}(-\mathbf{x}_{n}/\mathbf{x}_{n})}{\Gamma_{\mathbf{x}_{n}}}, \quad \mathbf{x}_{n} > \mathbf{x}_{n}$$

$$\mathbf{L} = \begin{bmatrix} - & (-\Delta \\ - & - \end{pmatrix} - \Gamma \begin{bmatrix} - & (-\Delta \\ - & - \end{pmatrix} \end{bmatrix}.$$
(

t t t Coo35806819358860068)] TU34880a70(s)] ZI08870.7471f(4210887399.46421258159944642326362

Other solutions

t	t		t	t	t	tt		t
	t	t t	t	t		t t	t	t

tt tt t tt tt tt t tt tt tt t $= \ , \ \ = \ , \Gamma = \ , \ , \ = \ , \ = \ , \ = \ .$, v = ,

t t t t t t tt(tt tt(t

Discussion

		t t	t	t			t	t	t	
		t	t	t	t		t		t	t t
t	t	t		t	t				t	tt
		t tt		t			t			t
	t	t	t	t	t		t		1	t t
t		t t	t	t	t		t			
				t	t t			t		
	t	& t	t (t t		t	1	t	t t	
		&	(t		tt
		t t	t t				t	1	t i	t
		tt	t		tt		t		t	
		tt	t	t	t	t		t	t	
	t		tt t	t t						
		&	tt(t	t	t			t	t t

$$x = \frac{(x^{-1} - x^{-1})}{(x^{-1} - x^{-1})} + \frac{\Gamma(x^{-1} - x^{-1})$$

$$\mu = (-\Gamma + \frac{\Gamma - (-\Gamma + \frac{1}{2})^{+}}{-(-\Gamma + \frac{1}{2})^{+}} - \frac{(-\Gamma + \frac{1}{2})^{+}}{-(-\Gamma + \frac{1}{2})^{+}} - \frac{(-\Gamma$$

Acknowledgements

References

- t titi titi

