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Abstract
In this paper, we consider a neural field model comprised of two distinct populations of neurons,
excitatory and inhibitory, for which both the velocities of action potential propagation and the time
courses of synaptic processing are different. Using recently-developed techniques, we construct the
Evans function characterising the stability of both stationary and travelling wave solutions, under the
assumption that the firing rate function is the Heaviside step. We find that these differences in timing
for the two populations can cause instabilities of these solutions, leading to, for example, stationary
breathers. We also analyse “anti-pulses”, a novel type of pattern for which all but a small interval of
the domain (in moving coordinates) is active. These results extend previous work on neural fields with
space-dependent delays, and demonstrate the importance of considering the effects of the different
time-courses of excitatory and inhibitory neural activity.
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Introduction

Models of neural fields have been studied extensively over the last few decades (Hansel &
Sompolinsky 1998; Pinto & Ermentrout 2001a, 2001b; Coombes et al. 2003; Laing & Troy
2003; Coombes & Owen 2004; Folias & Bressloff 2004; Coombes 2005), in the hope that they
will provide information about possible macroscopic patterns of activity in the cortex. These
patterns are on a much larger spatial scale than that of individual neurons, so the models
take a continuum limit in which space is continuous and the mean firing rate of neurons
is the variable of interest. Among some of the patterns of interest are stationary, spatially-
localised “bumps” of activity (Pinto & Ermentrout 2001b; Laing & Troy 2003; Blomquist
et al. 2005). These are thought to be involved in working memory and feature selectivity
in the visual system (Hansel & Sompolinsky 1998). Travelling waves of activity are also
of interest. Experimentally, these can be induced by stimulating pharmacologically treated
neural tissue slices (Pinto & Ermentrout 2001a; Huang et al. 2004); they have also been
observed in several different areas of the cortex of awake animals, often when no stimulation
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where “e” and “i” label excitatory and inhibitory populations, respectively. Here, the symbol
∗ represents a temporal convolution in the sense that

(η ∗ f )(x, t) =
∫ t

0
η(s ) f (x, t − s )ds . (3)

The function ηa(t) (with ηa(t) = 0 for t < 0) represents a synaptic filter, whilst wa(x) = wa(|x
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and we use the notation ρ(x, t) = f ◦u(x, t). Introducing Fourier transforms of the following
form

ψa(x, t) = 1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−i(kx+ωt)ψa(k, ω)dkdω, (7)

allows us to write

ψa(k, ω) = Ga(k, ω)ρ(k, ω). (8)

It is straightforward to show that the Fourier transform of Equation 6 is

Ga(k, ω) = νa(ω/va + k) + νa(ω/va − k), (9)

where

νa(E) =
∫ ∞

0
wa(x)e−i Exdx =

(
�a

2σa

)
1

σ−1
a + i E

. (10)

We have using Equations 9 and 10 that

Ga(k, ω) = �a(1 + iω/ωa)

(1 + iω/ωa)2 + σ 2
a k2

, (11)

where ωa = va/σa. We may now write Equation 8 as{
(1 + iω/ωa)2 + σ 2

a k2}ψa(k, ω) = �a(1 + iω/ωa)ρ(k, ω), (12)

which upon inverse Fourier transforming gives the PDE:

∂ttψa + (
ω2

a − v2
a∂xx

)
ψa + 2ωa∂tψa = �a

(
ω2

a + ωa∂t
)
ρ. (13)

If we choose the synaptic response ηa(t) to be the exponential: ηa(t) = αa�(t)
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Stationary bump solutions

For
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Figure 1. A plot showing stationary bump width � as a function of the threshold parameter h, as determined by
solving Equation 20. Parameters are σe = 1 σi = 2, and � = 1.

extended to cover travelling waves in systems with nonlocal interactions, such as studied here
(Coombes & Owen 2004; Kapitula et al. 2004; Pinto et al. 2005).

Generalising results in Coombes & Owen (2004) we may construct the Evans function of
the stationary one-bump solution as E(λ) = det(A(λ) − I), where

A(λ) =
[

A(0, λ) A(�, λ)

A(�, λ) A(0, λ)

]
, (21)

where A(ξ, λ) = Ae(ξ, λ) − Ai (ξ, λ) and

Aa(ξ, λ) = 1
|q ′(0)| η̂a(−iλ)wa(ξ)e−λξ/va , η̂a(k) =

∫ ∞

−∞
ηa(x)e−ikxdx. (22)

For our choice of an exponential synaptic response ηa(t) = αa�(t) exp (−αat), we have simply
that

η̂a(−iλ) = 1
1 + λ/αa

. (23)

Note that we can obtain q ′(0) by using

q ′(x) = we(x) − we(x − �) − �[wi (x) − wi (x − �)]. (24)

The discrete spectrum for the one-bump solution is then given by the zeros of the Evans
function E(λ) = 0, so that a solution is stable if the spectrum only resides in the left hand
complex plane (i.e. Re λ < 0). Note that a zero eigenvalue (satisfying E(0) = 0) is always
expected due to translational invariance of the one-bump solution (with the corresponding
eigenfunction q ′(x)). One natural way to find the zeros of E(λ) is to write λ = ν + iω and plot
the zero contours of Re E(λ) and Im E(λ) in the (ν, ω) plane. The Evans function is zero
where the contours intersect. Note that it is sufficient for us to determine the location of the
isolated spectrum for wave stability, since the systems under study in this paper are such that
the real part of the continuous spectrum has a uniformly negative upper bound (Coombes
& Owen 2004).

Examples

We now show several examples. If σe = 1, σi = 2 and � = 1, we see from Figure 1 that at
h = 0.1 we have two stationary bumps with widths � = 0.64701 and � = 2.5719. If we set
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Figure 2. Zero contours of the real part (dashed) and the imaginary part (solid) of the Evans function of a stationary
bump for ve = 0.25 (left) and ve = 0.15 (right). Other parameters are σe = 1, σi = 2, � = 1, αi = αe = 1, h = 0.1, vi = 1.

αe = αi = 1 and vi = 1 and decrease ve , we find that the wide stationary bump becomes unsta-
ble due to a single eigenvalue passing from the left half plane to the right half plane along the
real axis. This is shown in Figure 2, where we plot contours of the real and imaginary parts of
the Evans function over part of the complex (λ) plane for ve = 0.25 and ve = 0.15. The Evans
function has zeros where the two contours cross. Note that we always have a zero at the origin,
as expected. This instability manifests itself as a transition to a moving, or drifting, bump, as
shown in Figure 3. Here we run the system with ve = 0.25 up until t = 100, when we switch
to ve = 0.15, and add a small random perturbation to the solution. We see that the previously
stable stationary bump is replaced by a stable moving bump. If the position of a bump of activ-
ity is used to encode some aspect of an action to be performed in the future (Goldman-Rakic
1995), this instability is undesirable. For simulations of the full system we use Equation 15
as the firing rate function with β = 150. This moving bump will be discussed later.

Conversely, by holding ve constant and decreasing vi we can make the wide stationary bump
in Figure 1 go unstable through a Hopf bifurcation, in which a pair of complex eigenvalues
pass through the imaginary axis. This is shown in Figure 4, where the Evans function is
represented for vi = 0.4 (left) and vi = 0.2 (right). We see that between these values, a complex

Figure 3. Instability of a stationary bump due to an eigenvalue passing through zero. At t = 100, ve was changed
from 0.25 to 0.15 (and a small random perturbation was added). ue is plotted, red is high, blue is low. Other
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Figure 4. Zero contours of the real part (dashed) and the imaginary part (solid) of the Evans function for a stationary
bump for vi = 0.4 (left) and vi = 0.2 (right). Other parameters are ve = 1, αi = αe = 1, h = 0.
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Figure 6. The curve of drift instabilities, defined by E ′(0) = 0 (solid), and the curve of Hopf bifurcations, for which
E(λ) has a conjugate pair of purely imaginary roots (dashed). Other parameters are αe = αi = 1, h = 0.1, σe = 1, σi = 2
and � = 1. The stationary bump appears to be stable in the wedge between the two curves and unstable otherwise.

parameters it would be possible to observe higher codimension bifurcations, such as the
Takens-Bogdanov (double zero eigenvalue) (Curtu & Ermentrout 2004).

Discussion

It is possible to show that bifurcations of a stationary bump with an eigenvalue passing through
zero are not possible for Equations 1–2 if ve = vi , αe = αi , and σe < σi (as here) i.e., this is a
novel instability due to the differences in timings for the two populations. To show this, one
calculates E(λ) and obtains

E(λ) = 1
(1 + λ/α)2

1
|q ′(0)|2 {[(1 + λ/α)w(�) − (λ/α)w(0)]2 − [w(�)e−λ�/v]2} (25)

Figure 7. Supercritical Hopf bifurcation of a stationary bump. At t = 100 we switched ve from 0.8 to 0.5 (and a
small perturbation was added). 200 spatial points were used. Other parameters are σe = 1, σi = 2, αi = 1.8, αe = 3,
vi = 1, h = 0.1, � = 1. ue is plotted; red high, blue low.
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where ve = vi = v, αe = αi = α, and we have used the fact that w(0) > w(�). Clearly E(0) = 0.

If w(�) < 0, we also have that E ′(λ) > 0 for all λ > 0, and hence there can be no other positive
real roots of E(λ). The condition w(�) < 0 means that we are on the upper branch in Figure 1.

Similarly, it is possible to show that there are no purely imaginary roots of E(λ). We
substitute λ = iω into Equation 25, where ω ∈ R, ω �= 0 and set the real and imaginary parts
equal to zero, obtaining

[w(�)]2(1 − cos θ) − (ω/α)2[w(�) − w(0)]2 = 0 (26)

w(�){w(�) sin θ − 2(ω/α)[w(�) − w(0)]} = 0 (27)

where θ = 2ω�/v. Assuming that w(�) �= 0, solving (27) for w(�) − w(0) and substituting
into Equation 26 we obtain

[w(�)]2[1 − cos θ − (1/4) sin2 θ] = 0 (28)

which is only true if θ = 0, 2π, 4π . . . Substituting these values of θ back into Equation 27
we see that it cannot simultaneously be satisfied, i.e., E(λ) has no purely imaginary roots. If
w(�) = 0 the only root of E(λ) is λ = 0, which corresponds to the saddle-node bifurcation in
Figure 1. Thus both types of instabilities are a result of the differences in timings for the two
populations.

Bifurcations of the types discussed in this section have recently been observed in a system
with one neural population but in which the threshold is a dynamic variable (Coombes &
Owen 2005). There, the authors also saw a stationary bump start to move as an eigenvalue
moved through zero, and stationary breathers caused by a supercritical Hopf bifurcation.
Breathers have also been observed in neural field equations by Bressloff et al. (2003) and
Folias & Bressloff (2004), but in those papers the authors made the domain inhomogeneous,
inducing a bump to occur over a spatially-localised input. During normal awake operation
the cortex continuously receives inhomogeneous inputs, so the response of a neural model
with such inputs is of interest. However, under general anaesthesia the cortex will receive less
input (and conduction velocities may be increased (Swindale 2003)) so it is also of interest
to study the existence and stability of patterns in this situation.

Blomquist et al. (2005) recently studied a two-layer neural field model that can be best
thought of as a generalisation of that studied by Pinto & Ermentrout (2001b). In contrast
with Pinto and Ermentrout, Blomquist et al. included inhibitory-to-inhibitory connections
and did not assume that the firing rate function for the inhibitory population was linear.
They did not include conduction delays, but obtained both stable and unstable breathers
that were created in Hopf bifurcations, as seen here.

The common theme between our results and those of Coombes & Owen (2005),
Bressloff et al. (2003), Folias & Bressloff (2004) and Blomquist et al. (2005) is the pres-
ence of a second variable describing either another population of neurons or a local field
such as an adaptation current.

Travelling wave solutions

We now discuss travelling wave solutions, both fronts (which connect a region of high activity
to one of low activity) and pulses (travelling bumps, before and after which the medium is
quiescent). We introduce the coordinate ξ = x − ct and seek functions U(ξ, t) = u(x − ct, t)
that satisfy the full integral model equations. In the (ξ, t) coordinates, these integral equations
can be expressed as U(ξ, t) =Ue(ξ, t) − Ui (ξ, t), with

Ua(ξ, t) =
∫ ∞

−∞
dywa(y)

∫ ∞

0
dsηa(s ) f ◦ U(ξ − y + cs + c|y|/va, t − s − |y|/va). (29)
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Figure 8. (a) Speed of a front for 2h = 1 − �, in blue (h = 0.1, � = 0.8). Solid lines are stable while dashed are
unstable, as determined by the Evans function. Note the pair of transcritical bifurcations at αe = αi σi /(�σe ).
(b) Speed of a front when 2h �= 1 − �, in blue (h = 0.1, � = 0.85). The red curves correspond to travelling pulses,
discussed later. For � < 0.8, the blue curves in the left panel break in the opposite sense to those shown in the right
panel. Other parameters are αi = 0.1, ve = vi = 1, σi = 2 and σe = 1.

Hence, there is a bifurcation of the standing front when �αeσe = αiσi and 2h = 1 − �. To
determine the type of bifurcation, one examines various partial derivatives of the functions in
Equations 33–34, evaluated at the bifurcation point (see, e.g., Sec. 3.1 of Wiggins 1990). It
can be determined that the bifurcation is a simultaneous pair of transcritical bifurcations, each
creating a branch with c �= 0 (This bifurcation was misidentified as a pitchfork bifurcation
in Bressloff & Folias (2004) and Coombes & Owen (2004)). The transcritical bifurcations
are shown in Figure 8 (left) for specific values of the other parameters. When the condition
2h = 1−� does not hold, the transcritical bifurcations generically break into a single saddle-
node bifurcation, as seen in Figure 8 (right). Similar results have been seen before in a
one-layer model with a linear recovery variable (Bressloff & Folias 2004; Coombes & Owen
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Figure 10. Front speed as a function of h. Parameters are αi = αe = 1, ve = vi = 1, σe = 1, σi = 2, � = 0.8. The solid
branch is stable, while the dashed ones are unstable.

strong contrast with results from networks with purely excitatory coupling (Bressloff 2000;
Golomb & Ermentrout 2000) in which travelling structures cannot travel with arbitrarily
slow speeds.

Travelling pulses

We now study travelling pulses, which are bumps of the form studied earlier, but which
have speed c �= 0. The travelling pulses have the form q (ξ) ≥ h for ξ ∈ [0, �] and q (ξ) < h
otherwise. In this case the expression for ψa(ξ) is given by Coombes et al. (2003).

ψa(ξ) =




Fa

( −ξ

1 + c/va
,

� − ξ

1 + c/va

)
ξ ≤ 0

Fa

(
0,

ξ

1 − c/va

)
+ Fa

(
0,

� − ξ

1 + c/va

)
0 < ξ < �

Fa

(
ξ − �

1 − c/va
,

ξ

1 − c/va

)
ξ ≥ �

, (39)

where

Fa(x1, x2) =
∫ x2

x1

wa(y)dy = �a [exp (−x1/σa) − exp (−x2/σa)]
2

, x2 > x1 > 0. (40)

The dispersion relation c = c(�) i
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2h =
[

1 − exp (m−
e �)

1 − cm−
e /αe

]
− �

[
1 − exp (m−

i �)

1 − cm−
i /αi

]
. (42)

Note that as c →
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Figure 11. Left: pulse speeds as a function of ve . Right: pulse widths as a function of ve . Solid lines indi-
cate stable solutions, dashed unstable. Note that the speeds are always less than ve . Other parameters are
αi = αe = 1, vi = 1, σe = 1, σi = 2, h = 0.1, � = 1.

section. This is in contrast with the pitchfork bifurcation in speed seen in other neural field
models (Laing & Longtin 2001). Note that for these parameters a moving front does not
exist, as the condition 1 − � > h does not hold.

In Figure 12 we show the width and speed of a moving pulse as a function of h. For
a range of values of h, there are two pulses, a fast, wide one and a slow, narrow one. By
plotting the Evans function on the upper branch (not shown) we see that there is a Hopf
bifurcation as h increases through h ≈ 0.07. We use this information to indicate the stability
of the branches in Figure 12. This Hopf bifurcation appears to be subcritical. In Figure 13 we
show a simulation that starts with h = 0.05, for which the moving pulse on the upper branch
in Figure 12 is stable. At t = 100, h is switched to 0.07. The pulse starts to oscillate, but the
oscillations grow in magnitude until the pulse is destroyed. Other families of travelling pulses
are shown in Figure 8 (red curves).

Supercritical Hopf bifurcations of moving pulses, leading to travelling breathers or “lurch-
ing” waves, have been observed in several other neural systems (Golomb & Ermentrout 2000;
Coombes & Owen 2005). However, we could not find parameters for the system under study
for which this type of bifurcation occurred.

Other solutions

In this section, we discuss colliding fronts, “anti-pulses”, and the patterns seen when inverted
Mexican-hat connectivity is used. Returning to Figure 9, we see that for these parameters
and
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Figure 13. A subcritical Hopf bifurcation of a moving pulse. At t = 100, h is switched from 0.05 to 0.07. ue is
plotted, red high and blue low. Periodic boundary conditions are used. Other parameters are as in Figure 12.

The back would eventually catch up with the front. A simulation showing this can be seen
in Figure 14, and we see that the result is a moving pulse from the stable family shown in
Figure 8b.

If, however, we choose h
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Figure 16. Width (left panel) and speed (right panel) of a travelling pulse as a function of h, with in-
verted Mexican hat connectivity. Solid lines represent stable one-bump solutions and dashed unstable, while
the dotted lines indicate a solution of Equations 41–42 which is not a one-bump solution. Parameters are
ve = 0.2, vi = 1, αe = 1, αi = 1, � = 0.7, σe = 2, σi = 1.

Inverted Mexican hat connectivity

Although much work on pattern formation in neural field models has used one layer of neu-
rons with Mexican-hat connectivity, for which inhibitory connections have a wider spatial
extent than excitatory, there is evidence that the opposite is true, at least in some con-
texts (Swindale 1996). We now briefly analyse Equations 1–2 with coupling function 4, but
with σe > σi , i.e., with the excitatory connections having a greater spatial extent than the
inhibitory, which we refer to as inverted Mexican-hat connectivity.

As before, we can find families of moving pulses. In Figure 16 we show solutions of 41–42
as h is varied for inverted Mexican-hat connectivity. Note that not every point on the curves
in Figure 16 corresponds to a one-pulse solution, as some of the solutions may have q (ξ) > h
for more than one interval. In Figure 17 we show a stable travelling one-pulse solution from
the curve in Figure 16 (top panel), and the complex transients that can occur when two such

Figure 17. Top: a stable travelling pulse for inverted Mexican hat connectivity. Bottom: the interaction of two
such travelling pulses leads to complex behavior. ue is plotted. Note the different time scales. Parameters are
ve = 0.2, vi = 1, αe = 1, αi = 1, � = 0.7, σe = 2, σi = 1, h = 0.07.
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pulses interact (bottom panel, same parameters). For this connectivity, we can also obtain
families of travelling fronts (not shown).

Discussion

We have studied stationary and travelling bump and front solutions of a two-layer neural
field model with different conduction velocities and synaptic processing time-constants for
the two populations. By varying these parameters we have found bifurcations of stationary
bumps to both travelling and breathing bumps. These bifurcations can be found by explicitly
constructing an Evans function for these solutions and they cannot occur if the synaptic
time-constants and conduction velocities are the same for both layers.

Our work has produced results similar to those of several other groups. For example,
Curtu & Ermentrout (2004) recently studied an extension of the system first discussed by
Hansel & Sompolinsky (1998). This model had one neural population, Mexican-hat type
connectivity, an adaptation variable and no delays. The authors found travelling and standing
waves, and stationary, spatially-periodic patterns. However, their results were derived by
linearising about the spatially-uniform state, and are thus unable to say anything regarding
spatially-localised patterns of the type studied here.

Golomb & Ermentrout (2000) studied the effects of delays on propagating activity. They
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the effect of including such a term, it is straightforward to show that the equations governing
the speed of a front 33–34 would be modified to

2h = exp (Dcm−
e )

1 − cm−
e /αe

− � exp (Dcm−
i )

1 − cm−
i /αi

c ≥ 0 (57)

2h = 2(1 − �) + � exp (Dcm+
i )

1 − cm+
i /αi

− exp (Dcm+
e )

1 − cm+
e /αe

c < 0 (58)

and it seems likely that all of the calculations performed here could also be done with such
a term included. Hutt (2004) discussed a similar idea, but wrote the nonlinear term in 2
as a linear combination of a term whose delay depends on distance and one whose delay is
fixed.

Further extensions could include verifying some of the predictions here with a network of
spiking neurons. This would be computationally intensive due to the inclusion of delays, but
similar work has been performed (Golomb & Ermentrout 2000). An important extension that
w
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Guo et al. (2005) have recently studied a pair of coupled delay-differential equations
that are similar in structure to 59–61, as have Shayer & Campbell (2000), although those
systems have no spatial structure. Note that after setting ve = vi = ∞ in 60–61 and choosing
ηe(t) = �(t)e−t and ηi (t) = �(t)e−t/τ /τ we recover the model originally presented by Pinto
& Ermentrout (2001) and later analysed by Blomquist et al. (2005).
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