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Abstract. Translationally invariant integro-di�erential equations are a com-
mon choice of model in neuroscience for describing the coarse-grained dynamics

of cortical tissue. Here we analyse the propagation of travelling wavefronts in

models of neural media that incorporate some form of modulation or random-
ness such that translational invariance is broken. We begin with a study of

neural architectures in which there is a periodic modulation of the neuronal

connections. Recent techniques from two-scale convergence analysis are used
to construct a homogenized model in the limit that the spatial modulation is

rapid compared with the scale of the long range connections. For the special

case that the neuronal �ring rate is a Heaviside we calculate the speed of a
travelling homogenized front exactly and �nd how the wave speed changes as

a function of the amplitude of the modulation. For this special case we further

show how to obtain more accurate results about wave speed and the condi-
tions for propagation failure by using an interface dynamics approach that

circumvents the requirement of fast modulation. Next we turn our attention
to forms of disorder that arise via the variation of �ring rate properties across

the tissue. To model this we draw parameters of the �ring rate function from
a distribution with prescribed spatial correlations and analyse the correspond-
ing 
uctuations in the wave speed. Finally we consider generalisations of the

model to incorporate adaptation and stochastic forcing and show how recent

numerical techniques developed for stochastic partial di�erential equations can
be used to determine the wave speed by minimising the L2 norm of a travelling

disordered activity pro�le against a �xed test function.
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can side-step the use of homogenization theory and develop an alternative pertur-
bative analysis which tracks the position of the wave interface with a greater degree
of accuracy. Numerical simulations are presented to highlight both the regime of
validity of the homogenization calculations and the improved performance of the
interface approach where they break down. We break translation invariance again
in section 4, though this time by treating the �ring threshold as a random variable.
A theory that relates 
uctuations in the threshold to 
uctuations in wave speed
is developed and shown to be in excellent agreement with numerical simulations.
In this section we also treat the case of noise driven neural �elds (generalised now
to include adaptation) and develop a numerical technique for the determination of
wave speed based on recent freezing techniques developed for the study of stochastic
partial di�erential equations. Finally in section 5 we discuss further challenges for
the study of waves in random neural media.

2. Homogenization for periodically modulated connectivities. To incor-
porate the known microstructure of visual cortex within a large-scale modelling
framework Bresslo� has proposed the use of periodically modulated connectivity
kernels [9
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where

w�(x; y) =
1



RANDOM NEURAL MEDIA 5

Figure 1. Simulations of (1)-(6) for (top to bottom) � = 0, 0:1,
0:5 and 0:9. u(x; t) is shown color-coded. Other parameters are
h = 0:3, � = 20 and 
 = 5.

Since �(y) = 1 +� sin(2�y) it is natural to perform a change of variable, z = e2�iy,
so that we may rewrite (11) in the form of a contour integral around the unit circle
in the complex plane as

� = � c

2��

I
dz

(z � z+)(z � z�)
; � = h� 1=2; (12)

where

�z� = �(1 + c)i� i
p

(1 + c)2 � �2: (13)
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Figure 2. A plot of c = c(�) for the case of a travelling front
calculated for a Heaviside �ring rate with threshold h = 0:4 in the
homogenized model (solid line, red). Also shown are simulation re-
sults for 
 = 2� (crosses, red) as well as a theoretical curve (dotted
line, magenta) obtained from an interface dynamics calculation.

For small � the only pole in the unit circle is z+ and we may use the calculus of
residues to show that

� = � c

2
p

(1 + c)2 � �2
: (14)

Solving (14) for c gives

c = 2�

(
�2�+

p
1 + �2(4�2 � 1)

4�2 � 1

)
: (15)

A plot of c = c(�) is shown in Fig. 2. Corresponding wave pro�les from (9) are
shown in Fig. 3. In the limit � ! 0 we recover the result for the homogeneous
model (no modulation):

c =
1� 2h

2h
: (16)

As expected there is good agreement between the analysis of the homogenized model
and simulations of the full model only for small �. Also shown in this �gure is
another theoretical curve, with better agreement over a larger range of �. The
derivation of this curve side-steps the need for homogenization theory, though is
only valid in the special case that f(u) = H(u� h). We explain this result next.

3. Beyond homogenization. Following ideas recently developed in [11] for the
study of periodically modulated weight kernels of the form w(x; y) = �(jx�yj)�(y=
),
we seek to describe the properties of fronts in terms of the behavior at the interface
which separates high activity from low. If the front is not pulsating (which is the
case in the absence of period modulation) then in a travelling wave frame (of the
same speed as the wave) the rising edge of the front may be identi�ed with a single
(travelling wave) co-ordinate. For a pulsating front this point is no longer stationary
in time and instead oscillates. We now show how to derive the dynamics for this
interface between high and low activity states.



RANDOM NEURAL MEDIA 7

Figure 3. Wave fronts (solid lines) in the co-moving frame for
c = 0:1 (left) and c = 2 (right), with � = 0:9. Dashed curves are
the fronts in the homogeneous model for the same wave speeds.

In a co-moving frame the model (1) takes the form u = u(�; t) where � = x� c0t
for some �xed c0 and

� c0u� + ut = �u+  ; (17)

where

 (�; t) =

Z 1
�1

dyw(� + c0t; y)f(u(y � c0t; t)): (18)

We de�ne a moving interface (level set) according to

u(�0(t); t) = h; (19)

for some constant h. Here we are assuming that there is only one point on the
interface (though in principle we could consider a set of points). Di�erentiation
of (19) gives an exact expression for the velocity of the interface in the form

_�0 = �ut
u�

����
�=�0(t)

: (20)

Focusing now on the case of a Heaviside �ring rate with f(u) = H(u � h) means
that for a pulsating front solution with u > h for � < �0 (18) takes the simple form

 (�; t) =

Z �0+c0t

�1
dyw(� + c0t; y): (21)

3.1. Perturbation analysis. We now consider the case of small � and expand
w(x; y) using (6), as

w(x; y) ’ �(x� y)[1 + �(jx� yj � 1) sin(2�y=
)]: (22)

For � = 0 there is a travelling front q(�) given by the solution of

� c0
dq

d�
= �q +  ;  (�) =

Z 1
�

dy�(y); (23)

where the speed c0 is determined by q(0) = h. For small � we assume that the slope
of the travelling front varies su�ciently slowly so that we may make the convenient
approximation u�j�=�0(t) = q�j j
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Figure 6. Left: Fluctuating �ring threshold h(x) for h = 0:2,
a = 1 and � = 0:2. Middle: c(x) = (1 � 2h(x))=(2h(x)). Right:
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Figure 7. Destabilisation of a spot in a 2D model with Mexican
hat connectivity (as used in [16] with � = 0:5 and 
 = 4) and
spatio-temporal 
uctuations of the �ring threshold (h = 0:05, a =
0:1, � = 0:5 and � = 1). From top left to bottom right: plots of
u(r; t) at t = 0, t = 25, t = 50, t = 100, t = 150 and t = 200.
Simulations were done with a simple Euler scheme and the use of
2D Fast Fourier transforms to compute convolutions, with a spatio-
temporal discretisation �x = 0:05 and �t = 0:1 on a spatial grid
of size 1536� 1536.

Figure 8. Destabilisation of a spot in a 2D model with Mexican
hat connectivity (as used in [16] with � = 0:5 and 
 = 4) with
spatial 
uctuations of the �ring threshold (h = 0:05, a = 0:1 and
� = 0:5) and adaptation with g = 0:1. From top left to bottom
right: plots of u(r; t) at t = 0, t = 50, t = 100, t = 200, t = 400
and t = 800. The numerical scheme is the same as that used for
Fig. 7 with �t = 0:02.
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Figure 10. Speed of a bump of activity as a function of �ring
rate threshold h. Solid line: � = 20. Dashed line: � is spatial
white noise (see text for details). Upper branches are stable, lower
unstable. Other parameters: � = 15 and B = 0:4.

where bu(x) is a template function [19], chosen to be cos (x) in this case. Equa-
tion (47) is the result of minimising the L2 norm between u and bu [20, 21]. After
suitably discretising eqns. (45)-(47) in space, solutions of the resulting system can
be followed as parameters are varied, using (for example) pseudo-arclength contin-
uation. An example of the results obtained is shown in Fig. 10 (solid line) where
we plot c as a function of h for � = 20. We see that a stable and unstable bump
are destroyed in a saddle-node bifurcation as h is increased.

The form of (45)-(47) suggests that one could introduce spatial heterogeneity
to them, average over many realisations of this heterogeneity, and then solve the
resulting equations in order to determine the e�ects of this heterogeneity. As an
example, consider � (the gain of the �ring rate function f) to be spatial white
noise. In practice, this means that at each of the 1000 spatial points used in the

calculation of the term
R 2�

0
d



RANDOM NEURAL MEDIA 15

0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5
0

0.5

1

h

p
ro

p
o

rt
io

n

Figure 11. Proportion of simulations showing successful propa-
gation of a bump as a function of h. Other parameters: B = 0:4.

where the angled brackets indicate averaging over i and

f [u; �] =
1

1 + e��(u�h)
; (51)

will give information about the behaviour of (40)-(41) for a typical realisation of
the �i(x). The results of solving (48)-(50) when m = � = 20 are shown in Fig. 10
(dashed line). (We average over 2500 realisations of the �i(x). Increasing this
number, or increasing the number of spatial points used to calculate the integralR 2�

0
dyG(� � y)f(u(y)) does not qualitatively change the results presented.) From

Fig. 10 we see that including such heterogeneity should (i) lower the maximum value
of h for which a moving bump exists, and (ii) slightly decrease the speed of a stable
moving bump. To illustrate that the �rst e�ect occurs we plot in Fig. 11, for several
values of h, the proportion of 20 simulations for which a moving bump propagates,
where (for �xed h) each of the 20 simulations uses a di�erent realisation of �(x).
We see the gradual failure of propagation and, for example, that at h = 0:49 none
of the simulations showed a propagating bump, whereas from Fig. 10, if � was
constant over space, a stable bump would propagate at this parameter value. We
also observed numerically that such spatial disorder does slightly decrease the stable
bump’s speed (not shown).

4.3. Neural �eld models driven by temporal noise. Another method for in-
corporating randomness in a neural �eld model is to drive it with spatio-temporal
noise. For simplicity we focus here on purely temporal noise; we will use some of
the ideas presented in [ Tf 6.642 -2.463 Td [(2)]Tr s-353(to)-lg.
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Figure 12. Speed of a moving bump solution of (54)-(55) for
(from top to bottom) D = 0, 0:001 and 0:003. At each value of
B, 5 simulations of duration 1000 time units were performed and
the mean speed for each simulation was measured. The mean and
standard deviation of these 5 speeds are plotted. Other parameters:
� = 5, h = 0:4, � = 20 and 
 = 1.

h�(t)i = 0 and h�(t)�(s)i = D
 exp (�
jt� sj). D is the noise intensity and 1=
 is
the correlation time of the noise. Moving to a coordinate frame travelling at speed
c(t), (52)-(53) become

ut(�; t) = c(t)u�(�; t)� u(�; t) +

Z 2�

0

dyG(� � y)f(u(y; t))� a(�; t) + �(t); (54)

at(�; t) = c(t)a�(�; t) +
Bf(u(�; t))� a(�; t)

�
: (55)

Although we can no longer �nd �xed points of (54)-(55) because of the presence of
the noise term �(t), we can still freeze solutions using (for example) (47) and simu-
late (54)-(55) with (
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Figure 13. Top: simulation of (52)-(53) with additive noise and
B = 0:07 for D = 0 (0 < t < 3000), D = 0:001 (3000 < t < 6000)
and D = 0:003 (t > 6000). u(x; t) is shown colour-coded. Bottom:
instantaneous bump speed extracted from the simulation in the top
panel. Other parameters: � = 5, h = 0:4, � = 20 and 
 = 1.

bifurcation (i.e. only moving bumps are stable) whereas for D = 0:003, B = 0:07 is
to the left of the bifurcation, and the only stable state is a stationary bump.

5. Discussion. It is hard even at a �rst approximation to view the brain as a ho-
mogeneous system and so there is a pressing need to develop a set of mathematical
tools for the study of waves in heterogeneous media that can be used in brain mod-
elling. Homogenization is one natural multi-scale approach that can be utilised in
this regard, and we have revisited the mathematical foundations of this approach
in the context of non-local integral models that arise in neural �eld modelling. As a
perturbation technique it requires that modulation on the micro-scale be both small
in amplitude and rapidly varying in space, and as such is limited in its range of ap-
plicability. For the special case of a Heaviside �ring rate function we have shown
how improved results can be obtained (circumventing the need for rapid spatial
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informative to adapt recent ideas developed for the numerical study of waves in
stochastic PDEs [21]. In this sense it is likely that other ideas from applied dynam-
ical systems [27] may be usefully adapted for the study of non-local random neural
systems.

We have focused mainly on developing results in one spatial dimension and it
remains to perform the extension to two spatial dimensions. Although both ho-
mogenization and interface formalisms go over naturally to two spatial dimensions
the solution of the resulting models will no doubt remain a challenge | if nothing
else but for the reason that solutions in 2D can come in a variety of rich forms such
as spiral waves, labyrinthine structures and replicating and rotating collections of
bumps [28, 16]. A generalisation of the freezing approach discussed in Secs. 4.2-4.3
has been applied to spiral waves in reaction-di�usion systems [20, 29] and it should
be possible to apply them to waves in 2D neural �eld models. The development
of a 2D interface dynamics for translation invariant kernels is currently under de-
velopment and is likewise expected to form the basis for a perturbation theory for
modulated connectivities. These and related ideas will be presented elsewhere.

Appendix A. Here we give an outline of the derivation of the homogenized version
of (1) by means of two-scale convergence techniques. The detailed derivation of (4)
will be presented in a complementary paper [30]. We write the original model in
the form

@

@t
u"(x; t) = �u"(x; t) +

Z 1
�1

w�(x0 � x; x
0

"
)f(u"(x

0; t))dx0; (56)

where w�(x; y) = �(jxj=�(y))=�(y). The relationship between w and w� is given by
w(x; y) = w�(x� y; y="). It turns out that this formulation of a neural �eld model
is tractable when using two scale convergence techniques.

We view (56) as a one-parameter family of neural �eld models, parametrized by
". The initial value problem of (56) is, according to Potthast et al. [31], globally
well-posed in the Banach space of bounded, continuous functions for connectivity
functions which are uniformly bounded in both the supremum norm and the L1-
norm and satisfy a H�older condition, and �ring rate functions which take values
between 0 and 1. One notable property is that the "-dependent solution is uni-
formly bounded, where the bound depends on the supremum norm of the initial
condition and the bounding constant of the connectivity function in the L1-norm.
We assume from now on that the conditions prescribed in Potthast et al. [31] are
ful�lled.

For our purposes we will need the existence and boundedness of solution u" in
L2(R). From Theorem 3.2.1 in Faye et al. [32], which is a straightforward adap-
tation of a classical result by Hale et al. [33] for �rst order functional di�erential
equations, we get the following result:

Lemma 1. Assume that w� 2 L2(R) and that the initial condition u"(x; 0) =
U(x) is square integrable, i.e. U 2 L2(R). Then there is a unique solution u" 2
L2([0; T ];L2(R)) of (56) which obeys the uniform bounds

ku"kL1([0;T ];L2(R)) � C1

�
kUkL2(R) + kw�kL2(R)

�
; (57)

and
ku"kL2([0;T ];L2(R)) � C1

�
kUkL2(R) + kw�kL2(R)

�
: (58)
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for some constants C1 > 0 and T > 0.

Just as in [34, 35] we get the following results:

Lemma 2. Let the initial condition u"(x; 0) = U(x) of (56) belong to the intersec-
tion L1(R) \ L1(R) and assume that

sup
x2R
f
Z 1
�1

w�(x; y)dyg � C

for some positive constant C > 0. Then there exists a unique u" 2 C(R+
0 ;L1(R) \

L1(R)) satisfying (56). Moreover, we have the uniform bounds

max
0�t�T

ku"kL1(R) � CkUkL1(R)

and
max

0�t�T
ku"kL1(R) � CkUkL1(R)

for some T > 0.

The proofs of Lemma 1 and Lemma 2 will be presented in a forthcoming pa-
per [30].

Next, let us de�ne the concept of two-scale convergence: Let T denote the 1-
dimensional unit torus (or unit circle) and let Y = [0; 1]. We identify the Y -
periodic functions by those functions that are de�ned on T and introduce func-
tions � 2 L2(R � T) and consider their traces �(x; x="). Assume that fv"g is a
bounded sequence in L2(R). The sequence fv"g is said to two-scale converge to
v
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Now, according to Remark 7 in [36] it is possible to modify the de�nition of two-
scale convergence in L2-spaces to obtain a de�nition of two-scale convergence in
L1-spaces; see also [37]. The test functions are chosen here to be continuous with
compact support in x and continuous and Y -periodic in y. It is crucial that we can
include the L1-case since it turns out in the application of two-scale convergence
to the convolution integral in (1) that one of the terms is assumed to two-scale
converge in L1. So the fundamental question now is how to determine the limit of
the convolution term as "! 0. The following theorem which originally was proved
by Visintin [37] gives the answer to that question:

Theorem 1. Suppose that fv"g is a sequence of two-scale functions converging to
v 2 L2(R;L2(T)) and that fw"g is two-scale converging to w 2 L1(R;L1(T)). Then
the convolution integral

[w" 
 v"](x) �
Z 1
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