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Abstract. We present a biologically plausible model of binocular rivalry consisting of a network of
Hodgkin—Huxley type neurons. Our model accounts for the experimentally and psychophysically observed
phenomena: (i) it reproduces the distribution of dominance durations seen in both humans and primates,
(ii) it exhibits a lack of correlation between lengths of successive dominance durations, (iii) variation of
stimulus strength to one eye influences only the mean dominance duration of the contralateral eye, not the
mean dominance duration of the ipsilateral eye, (iv) increasing both stimuli strengths in parallel decreases
the mean dominance durations. We have also derived a reduced population rate model from our spiking
model from which explicit expressions for the dependence of the dominance durations on input strengths
are analytically calculated. We also use this reduced model to derive an expression for the distribution of

dominance durations seen within an individual.

1. Introduction

Binocular rivalry occurs when the two eyes are presented with drastically different images.
Only one of the images is perceived at a given time, and every few seconds there is alterna-
tion between the perceived images. The perceived durations of the images are stochastic
and uncorrelated with previous perceived durations (Fox and Herrmann, 1967; Walker,
1975). Also, changing the contrast of the images will change the dominance durations of
the perceptions in specific ways.

It is not yet clear exactly what is rivaling during binocular rivalry (Lee and Blake,
1999; Logothetis et al., 1996). It was traditionally thought that the rivalry was between
the two eyes (Blake, 1989; Lehky, 1988). However, there is more recent evidence that the
neurons at the site(s) of rivalry have access to information from both eyes (Carlson and
He, 2000; Kovacs et al., 1996; Lumer et al., 1998; Ngo et al., 2000), and these experimental
results cannot be explained in terms of “eye rivalry” (although see Lee and Blake (1999)
for an indication of how changing stimulus characteristics can produce either “eye rivalry”
or “stimulus rivalry”).

Recordings in the cortex of monkeys undergoing binocular rivalry indicate that the neu-
ronal activity of binocular rather than monocular neurons is correlated with the perception
of one of the presented images (Leopold and Logothetis, 1996; Leopold and Logothetis,
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1999; Logothetis, 1998; Logothetis et al., 1996; Logothetis and Schall, 1989). The pro-
portion of neurons which are active only when one of the images is perceived increases
as one moves up the visual pathway (Leopold and Logothetis, 1999; Logothetis, 1998).
It should be noted that while some neurons are more active when their preferred image
is perceived, others are more active when their preferred image is suppressed, and yet
others show little selectivity during nonrivalrous stimulation but become more selective
during rivalrous stimulation (Leopold and Logothetis, 1996; Logothetis, 1998; Logothetis
and Schall, 1989).

Several explanations of binocular rivalry have been proposed (Dayan, 1998; Gomez et
al., 1995; Lehky, 1988; Lumer, 1998)
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We include two slow processes. The first is spike frequency adaptation due to a calcium—
dependent potassium current (Huguenard and McCormick, 1992; McCormick and Hugue-
nard, 1992). This is sufficient to cause oscillations in the network’s activity, although they
occur on a similar time—scale to the time constant of the decay of this current, ~ 80 ms.
We also include synaptic depression in the excitatory to excitatory connections that has
a larger time—constant (Abbott et al., 1997). We find that synaptic depression alone is
not sufficient to cause switching — we need a slow hyperpolarizing current as well. The
switching phenomenon is quite robust with respect to the exact strengths and time-scales
of these slow variables.

For simplicity, we explicitly model only those neurons whose activity increases when
their preferred stimuli are perceived. Those neurons that respond preferentially when
their preferred stimuli are suppressed may be part of a different circuit that is involved
in suppression of a particular image or eye, and those whose selectivity changes when
the stimulus is changed from rivalrous to nonrivalrous may be manifesting the effects of
attention on perception (Leopold and Logothetis, 1996; Logothetis, 1998; Logothetis and
Schall, 1989). Neurons in these last two classes are not explicitly modeled. Those neurons
possibly involved in suppressing an image are similar to those that fire when their preferred
stimulus is dominant (both groups fire when one image is suppressed) and our model could

be augmented to include such neurons.

2.1. SIMULATION RESULTS

Figure 2 shows a rastergram of the firing events of the excitatory neurons in the network
given two current stimuli centered at neurons whose preferred orientations differ by 90
degrees. At every moment in time, the activity is localized into a bump which is centered
at either of the two locations of maximum external current input. A bump in one of these
locations is thought to represent a perception of bars of the corresponding orientation.
The inhibitory neuron activity is very similar although it has a greater angular spread.
Note the wide spread of activity, lasting less than 100 ms, when the activity initially
moves to another location. The decrease in width after this period is probably due to the
adaptation current saturating. This type of high activity at the onset of a percept is seen
in some neurons in superior temporal sulcus and inferior temporal cortex during binocular
rivalry (Leopold and Logothetis, 1999; Sheinberg and Logothetis, 1997). Experimentally,

bursting behavior is also seen in some of these neurons. Replacing some of the fast ex-
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The switching can be understood heuristically. In Sec. 3 we give a more quantitative
explanation. Consider two input stimuli 1 and 2. Connections between excitatory neurons
promote activity centered at stimulus 1 or 2 while inputs from the inhibitory population
prevent this activity from spreading over the whole network. This inhibitory activity is
also strong enough to suppress activity at the site corresponding to the stimulus that
is not perceived. (For sufficiently strong inputs, two bumps may coexist). Suppose that
population 1 is active and 2 is suppressed and consider the effects of the slow current
respounsible for spike frequency adaptation. This current increases at site 1 and decreases
at site 2 until eventually the adaptation remaining from activity at site 2 has decreased
sufficiently that the neurons at site 2 are able to fire again, immediately suppressing the
neurons at site 1. The adaptation current at site 2 then builds up, the adaptation current
at site 1 wears off sufficiently, and the cycle repeats. A similar argument can be made if
synaptic depression is the cause of the switching: both the recurrent excitation at site 1
and the inhibition of the neurons at site 2 weaken, allowing neurons at site 2 to fire and
suppress neurons at site 1.

One well-known aspect of binocular rivalry is that if the strength of the stimulus to one
eye is changed, it is largely the mean dominance duration of the other eye that is affected,
not the mean dominance duration of the eye whose stimulus strength is being changed.
This effect is sometimes known as Levelt’s second proposition (Bossink et al., 1993; Levelt,
1968) and has been observed many times (Leopold and Logothetis, 1996; Logothetis et
al., 1996; Mueller and Blake, 1989). More specifically, if the strength of the stimulus to
eye 1 is decreased, the mean dominance duration of eye 2 typically increases markedly
in a nonlinear fashion, while the mean dominance duration of eye 1 decreases by a small
amount. We performed this experiment with our model and the results are shown in
Figure 6 (together with data from the reduced model that is presented in Sec. 3). They
agree well with observations, and an explanation for this behavior is given in Sec. 3.

Another experiment that has been performed involves changing the angle between the
two sets of bars presented to the two eyes. It has been observed that decreasing the
angle from 90 degrees causes the mean dominance durations to increase (Andrews and
Purves, 1997). We performed this experiment on our model and the results are shown in
Figure 7. The variation is small (as it is in experiments, (Andrews and Purves, 1997))
but significant. (Smaller angular differences could not be tested, as this caused the two
bumps to “merge” into one that spanned both input positions. This is due to the widths
of the Gaussians used in coupling neurons — if these widths were reduced, smaller angular
differences could have been tested, but the total number of neurons in the network would
have then had to be correspondingly increased, resulting in prohibitively long simulation
times.) An explanation for the dependence of dominance duration on angle between bars

is given in Sec. 3.
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where all constants are positive. Here u; represents the spatially averaged net excita-

tory activity of each localiz
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has worn off by a sufficient amount. For the parameters shown, population 1 switches on
when a1 = I; — 8 = 0.03 and population 2 switches on when ay = I, — 8 = 0.1.

We can calculate the dominance period by following






12 Laing and Chow

thetis, 1996), however, when interpreting these results one should keep in mind that the
relationship between “stimulus strength” and “current input” is not at all clear.

The full system, (1)-(6), shows qualitatively similar oscillations and dependence of
dominance durations on input strengths as the two special cases examined above, and we
suggest that in practice it may well be a combination of adaptation and synaptic depression
(and possibly more than one mechanism for each of these) that causes switching. As a
specific example of the behavior when both adaptation and depression are present in (1)-

(6), we show in Figure 6 linearly—
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a Gaussian distribution, and ag is randomly chosen from another Gaussian distribution,

d is reset. The distribution of dominance durations is then
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each time a

where 2,7, k and 7 are related to the parameters of the two Gaussian distributions. See
Appendix C for the derivation. This function is plotted in Figure 4 together with data
from the simulation of the full Hodgkin-Huxley network. It fits the data well and has the
typical skewed shape seen in experimental data (Kovacs et al., 1996; Logothetis et al.,
1996).

4. Discussion

Our cortical circuit of excitatory and inhibitory neurons is able to reproduce many of
the observed dynamical characteristics of binocular rivalry. We are also able to compute
analytically the dependence of the dominance period on the input strengths, and this shows
how Levelt’s second proposition can arise naturally in a network with mutual inhibition.

We find that the input strength to the network strongly influences the dominance du-
ration. This allows large variations in the dominance durations even with fixed adaptation
and synaptic depression time scales. The large distribution in mean times between subjects
could be due to the differential input to the local circuit — this may be especially true
of feedback from higher level cortical areas — and the strength of this contribution could
vary widely between subjects and even change within a subject. The neuromodulators
acetylcholine, histamine, norepinepherin and serotonin are all known to decrease the effects
of spike frequency adaptation in human cortex (McCormick and Williamson, 1989) and
if adaptation is the main mechanism for switching, changes in their concentration would
significantly affect mean dominance durations. It is known that there is some training
effect in binocular rivalry and multistable perception (Leopold and Logothetis, 1999),
and systematic changes in switching frequency on the time scale of several minutes have
been observed (Borsellino et al., 1972; Lehky, 1995). Also, knowledge that a stimulus is
ambiguous and the possible perceptions of it plays a role in switching (Rock et al., 1994).

There are instances when rivalry does not take place. It is known that if the stim-

ulus contrast is reduced the images from the two eyes can fuse into a single merged
percept (Leopold and Logothetis, 1999). Presumably, this ﬁ som épt h (@ﬁﬁhﬁha}(tm(ati: som bpt
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Our reduced model was anticipated by Lehky (1988) who proposed a neural network
model of binocular rivalry which involved reciprocal inhibitory feedback between signals
from the two eyes, prior to binocular convergence. He created an electronic circuit to
represent the network, and for strong enough reciprocal inhibition the circuit oscillated.
The oscillations stopped for weak inhibition which Lehky attributed to fusion. He could
reproduce Levelt’s second proposition by changing the adaptation rates on either neuron
and postulated that changing stimulus strength changes adaptation rates.

Recently, Kalarickal and Marshall (2000) numerically studied a model similar to (1)-
(6), with noise, but not including adaptation. Their model reproduced Levelt’s second
proposition, the lack of correlation between successive dominance durations, and the
results of Mueller and Blake (1989) relating to synchronized changes in input strengths.
They also realized that it is the total input to the inactive population that determines
the time for which the active population remains active (thus explaining Levelt’s second

proposition and the results of Mueller and Blake (1989)), but the advantage of our reduced
model (1)-(6) over fr mﬁ) gl¢c and 1 lkci&n Pﬁodeén ueller n4éé$9)) f@ @yer nt the na
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latter it is nonperiodic, as seen from Figure 4. Thus such a model provides few benefits
over a spatially—averaged rate model such as (1)-(6).

Our model does not specify whether the rivalry is “stimulus rivalry” or “eye rivalry”.
Recent results of Lee and Blake (1999) may indicate that both are occurring. These authors
presented orthogonal gratings to the two eyes and investigated the effects of both flickering
the images at 18 Hz and swapping the images between the two eyes (as done by Logothetis
et al. (1996)). Their results suggest that both the 18 Hz flicker and the swapping of the
images continually produce transient effects that significantly change perception of the
images, and that either “eye rivalry” or “stimulus rivalry” can result from very similar
stimuli. Other recent results (O’Shea, 1998) suggest that binocular rivalry consists of two
components: alternations between two images that are independent of eye of origin, and
alternations between two images that depend on eye of origin. It is possible that networks
with our proposed connectivity exist in various regions of the cortex and produce rivalrous
dynamics.

The temporal dynamics of the perception of other ambiguous stimuli such as the Necker
cube are similar to those investigated in this model (Borsellino et al., 1972; Gomez et al.,
1995), which lends weight to the idea that binocular rivalry is another manifestation
of competition between alternative representations of a stimulus, rather than being a
phenomenon that is restricted to the ocular system (Leopold and Logothetis, 1999), and
it may be possible to extend this type of modeling to include more complex visual stimuli,

for example, blurred images (O’Shea et al., 1997).
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neurons (and the number of inhibitory neurons),

; 50 .
gle = Cee\| — exp (=50[(j — k)/N?) (15)
and 55
gle = aie\| — exp (—20[(j — k)/NT) (16)
Similarly, the synaptic current entering the jth inhibitory neuron is
1 LA LA
N [(Vez -V7) Z 9ei 35 + (Vi = V7)) Z it 3? (17)
k=1 k=1

where V,; =0, V;; = —80, Vij is the voltage of the jth inhibitory neuron,

o2 = a2 exp (20((G - F)/NT) (18)

and
ot = [ exp (=300 — B)/NP) (19

A typical I, for the excitatory population is

I(i)=0.4 lexp (— {MF) + exp (— {W}Q)] —0.01 (20)

wherei = 1... N, i.e. two Gaussians centered at 1/4 and 3/4 of the way around the domain
together with a constant negative current. I.,; for the inhibitory population is 0. Typical

values for the coupling strengths are aee = 0.285, e = 0.36, ae; = 0.2, 3 = 0.07.

B. Derivation of Reduced Model

Here we derive the reduced model, equations (1)—(6). We first note that spike frequency
adaptation and synaptic depression are both slow processes relative to the time over which
a spike occurs. Both are driven by the post-synaptic activity. Focusing on adaptation we

can write

da;
dt
where a; is a generalized adaptation variable (e.g. the calcium concentration in system (13))

= —ai/T—FAZ'(t) (21)

and A;(t) is proportional to the cell activity (instantaneous firing rate) of neuron 7. We
then assume that the neuronal activity is driven by the synaptic inputs through a gain
function f,

Ai(t) = £ (Y wigUs (1) — ai + ;) (22)
where w;; represents the synaptic weight from neuron j to neuron 4, and Uj(t) is the post-

synaptic response of neuron j. We assume the influence of the adaptation is linear and I;
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where 2 1y ) )
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and Q is a normalization constant defined through [*°_ p(T)dT = 1. So
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(30)

(31)

where we have made the substitution u = a — B/(2A) and, used the fact tha% %@ 11 1 % g%j '
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LAING: Solution of the reduced model (1)—(4). Parameter values are a =
0.2,8=04, ¢, =04, 7, = 20, I; = 0.43, I, = 0.5, g1 = go = 1. The top
plot is u1 and a1, the bottom is uy and as. 33
LAING: Dominance durations with only adaptation considered. Top: equa-
tions (1)—(4) with g1 = g2 = 1, as given by (9). 71 is dashed and T5 is solid.
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Figure 2. LAING: Activity in the excitatory population as a function of time. The current stimuli are

centered at neurons 15 and 45. The right plot shows detail of the left plot.
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Figure 4. LAING: The distribution of dominance durations for the Hodgkin—Huxley model. The solid
line is equation (12) with parameters v = 0.0174, n = —0.0005, x = 0.0782, 7 = 1.1389, and the

dashed is a Gamma distribution with A\ = 2.3593 and r = 6.7381 where the Gamma distribution is
ft) = )\r/l"(r)tT_1 exp(—At).
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Autocorrelation Coefficient

Figure 5. LAING: Autocorrelation coefficients for the data in Figure 4.
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