


I. INTRODUCTION

Spatio-temporal pattern formation in regions of the brain has been a topic of

great interest for a number of years [1, 2, 4–6, 10, 12, 16, 18, 25, 29]. Because of the

relative spatial scales of the patterns of activity and individual neurons, continuum

models, in which space is taken as a continuous variable, are often used. The patterns

studied include spatially-localised “bumps”, modelling working memory and feature



spatially approximate periodic stripes are formed by coupled groups of neurons in the

prefrontal cortex [15]. Only spatially-localised patterns have previously been studied

for this model [19, 21], and the oscillatory nature of the coupling function is likely to

lead to novel behaviour [20].

Our goal is to use the analytical stability analysis of Hutt et al. [17] to investigate

Turing instabilities in (1)–(3). Since the trigonometric functions in w have period

2π we choose a domain Ω = [−10π, 10π], with periodic boundary conditions. (The

effects of a different domain size are discussed below). In (2) and (3), we have b, θ > 0

and set r = 0.095.

The paper proceeds as follows. First, we find spatially-uniform steady states of the



that is,

u∗ =
8b

(

1 − e−10bπ
)

e−r/(u∗−θ)2

b2 + 1
. (4)

Given b, (4) has one or three solutions, depending upon the value of θ. Fig. 1 shows

u∗ as a function of θ. With respect to spatially uniform perturbations, the zero

and upper steady states are always stable (solid lines) and the middle steady state is

unstable (dashed lines). The two nonzero steady states are destroyed in a saddle-node

bifurcation as θ increases.

B. Stability

To find a possible Turing bifurcation point we use the linear stability analysis of

Hutt et al. [17]. Let u∗ to be the upper spatially-uniform steady state found in (4)

and let

u(x, t) = u∗ +

∞
∑

n=−∞

un exp (iknx + λnt)

where kn = 2πn/|Ω| = n/10. Substituting into (1) and keeping first order terms we

obtain

λn = −1 + γWn

where γ ≡ f ′(u∗) and

Wn =
4b(b2 + 1)

[

1 − (−1)ne−10bπ
]

(b2 + k2
n)2 + 2 (b2 − k2

n) + 1
.

We see that λn ∈ R, so no oscillatory bifurcations are expected. Bifurcations do occur

when λn = 0, that is, when

γ = γ∗ ≡ 1

Wn
=

(b2 + k2
n)

2
+ 2 (b2 − k2

n) + 1

4b(b2 + 1) [1 − (−1)ne−10bπ]
. (5)

Since Wn > 0, the uniform steady state loses stability as γ increases through γ∗. Now

dγ∗/dkn > 0 for b > 1, so in this case u∗ will go unstable to a perturbation with k = 0,

i.e. to another spatially-uniform state. When 0 < b < 1, γ∗(kn) has a minimum at

kn =
√

1 − b2



is kn = 1.0, hence n = 10. (Recalling that kn = 2πn/|Ω|, we see that for a different

domain size, periodic perturbations with n 6



D. The role of periodic orbits

The computational details of following periodic orbits are given in the appendix.

First, we consider b = 0.25. The top panel of Fig. 5 shows the solution curves of

8-, 9- and 10-bump periodic solutions. Stable solutions are indicated by solid lines

and unstable solutions by dashed lines. As θ is increased, 10-bump solutions are the

last to be destroyed in a saddle-node bifurcation. Vertical lines indicate the value of

θ for which a Turing instability occurs. The smallest value of θ for which a Turing

instability can occur is for instabilities with the wavenumber kn = 1.0, that is, n = 10.

Thus a 10-bump periodic solution will always arise in a Turing instability for these

parameter values. The saddle-node bifurcation of the upper and middle fixed points

is given by the circles joined by solid lines. A non-trivial spatially uniform steady

state cannot exist to the right of this line. To the left of the solid vertical line, a stable

uniform steady state will be unaffected by a spatial perturbation. For θ between the

solid vertical line and the saddle-node bifurcation vertic



u = 0.

The different types of behaviour are explained by Fig. 6, where we plot saddle-





Since the domain is of size 20π we take w(x) to be periodic with period 20π, writing

w(x) =
α0

2
+

∞
∑

p=1

αp cos (px/10) (A2)

where

α0 =
2

20π

∫

Ω

w(x)dx =
W

10π

and

αp =
2

20π

∫

Ω

cos (px/10)w(x)dx

=
2b(b2 + 1)(1 − e−10bπ)

5π{[b2 + (p/10)2]2 + 2[b2 − (p/10)2] + 1} .

Substituting (A1) and (A2) into (1) we have

a0

2
+

∞
∑

m=1

[am cos (mnx/10) + bm sin (mnx/10)] =

α0

2

∫

Ω

f [u(y)]dy +

∞
∑

p=1

αp cos (px/10)

∫

Ω

cos (py/10)f [u(y)]dy +

∞
∑

p=1

αp sin (px/10)

∫

Ω

sin (py/10)f [u(y)]dy.

So for p = mn we have

a0 = α0

∫

Ω

f [u(x)]dx

am = αmn

∫

Ω

cos (mnx/10)f [u(x)]dx

and

bm = αmn

∫

Ω

sin (mnx/10)f [u(x)]dx.

Note that since u(x) is periodic with period 20π/n we have

a0 = nα0

∫ 20π/n

0

f [u(x)]dx (A3)

am = nαmn

∫ 20π/n

0

cos (mnx/10)f [u(x)]dx (A4)

and

bm = nαmn

∫ 20π/n

0

sin (mnx/10)f [u(x)]dx. (A5)

9



Equations (A3)–(A5) form a set of nonlinear coupled equations. These equations

do not uniquely specify the solution, since any spatial translation of u(x) is also a

solution. We thus pick one from this infinite family by imposing that a1 = 0. We

set b and θ, choose n, and find an initial n-bump pattern that is a solution of (1)

by solving (A3)–(A5). We use the pseudoarclength continuation method [8] to find

solutions as parameter values are varied. Following these patterns as θ is increased,

we find that they are destroyed in saddle-node bifurcations, as shown in Fig. 5.
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FIG. 4: (Color online) Top: A stable Turing pattern for b = 0.25, θ = 0.63. Bottom: A

transient Turing pattern for b = 0.5, θ = 1.94. Time is plotted horizontally and space

vertically. The color indicates the value of u (scale on right).
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