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In both networks we assume that the oscillators are heterogeneous. The effects of delays on the
dynamics of coupled oscillator networks have been considered a number of times previously [10,
15, 24, 52, 55], but here we will extensively use the recent ansatz of Ott and Antonsen [46, 47] to
derive continuum level descriptions of travelling waves, which will make the formulation of delayed
equations straightforward.

We study Kuramoto oscillators in Sec. II and theta neurons in Sec. III. For the Kuramoto
oscillators we consider constant delays in Sec. II B, transmission delays in Sec. II C and distributed
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where

G(x) =

{
1

4πσ , |x| < 2πσ

0, otherwise
(6)

and the spatial integral is evaluated using periodic boundary conditions. The density f satisfies the
continuity equation

∂f

∂t
+

∂

∂θ
(fv) = 0 (7)

where

v = ω +
K

2i

[
Ze−iθ − Zeiθ

]
(8)

The system (7)-(8) is amenable to the Ott/Antonsen ansatz [46, 47] so we write

f(θ, ω, x, t) =
g(ω)

2π

[
1 +

∞∑

n=1

{z̄(ω, x, t)}neinθ + c.c.

]
(9)

for some function z(ω, x, t) where “c.c.” is the complex conjugate of the previous term. This ansatz
is an assumption that f takes the particular form (9). Substituting (9) into (5) and (7)-(8) we find
that z satisfies

∂z

∂t
= iωz +

K

2

[
Z − Zz2

]
(10)

where

Z(x, t) =

∫ 2π

0

G(x − y)

∫ ∞

−∞

g(ω)z(ω, y, t)dω dy (11)

Using contour integration to evaluate the integral over ω in (11) and defining u(x, t) = z(Ω0− i, x, t)
we find that u satisfies

∂u

∂t
= (−1 + iΩ0)u +

K

2

[
Z − Zu2

]
(12)

where

Z(x, t) =

∫ 2π

0

G(x − y)u(y, t)dy (13)

Partially coherent uniformly-twisted states are solutions of (12)-(13) of the form u(x, t) = aei(qx+νt)

where a and ν are real and q is an integer (the “twist” of a twisted state; an integer because of the
periodic boundary conditions of the domain). The quantity a (0 < a < 1) measures the coherence
level of a state: a increases as the coherence increases, q gives the rate at which the phase of u
changes with x at a fixed t, while ν gives the temporal rotation rate of a twisted state. Substituting
this form of solution into (12)-(13) we find

iν = −1 + iΩ0 +
KĜ(q)

2
(1 − a2) (14)

where Ĝ is the Fourier transform of G:

Ĝ(q) =

∫ 2π

0

G(x) cos (qx)dx =
sin (2πσq)

2πσq
(15)

for the coupling function given by (6). Equating real and imaginary parts of (14) we find

a2 = 1 −
2

KĜ(q)
and ν = Ω0 (16)
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and |x − y| denotes the shortest distance between points x and y on the circle, i.e. |x − y| =
min (|x − y|, 2π − |x − y|). For a twisted state u(x, t) = aei(qx+νt) and coupling function (6)

Z(x, t) =
iaei(qx+νt)

4πσ

[
1 − e2πiσ(q−νs)

q − νs
−

1 − e−2πiσ(q+νs)

q + νs

]
(29)

and thus twisted states are solutions of

iν = −1 + iΩ0 +
K

2

[
η − η̄a2

]
(30)

where

η ≡
i

4πσ

[
1 − e2πiσ(q−νs)

q − νs
−

1 − e−2πiσ(q+νs)

q + νs

]
(31)

Setting a = 0 we find that for fixed σ and s a q-twisted state is created at

K =
2

Re(η)
(32)

where ν is a solution of

ν = Ω0 +
Im(η)

Re(η)
(33)

We know that for s = 0, Im(η) = 0 and thus ν = Ω0 and a q-twisted state is created at K = 2/Ĝ(q).
Following these bifurcations as s is increased from zero we obtain the curves shown with solid lines
in Fig. 4. The stability of these solutions was found by direct simulation to change via a Hopf
bifurcation at the points indicated by circles in Fig. 4. We see that for these parameter values,
increasing s, i.e. decreasing the transmission velocity, moves all curves to higher values of K.

We finish this section by noting that when performing the reduction of general weakly coupled
oscillators with transmission delay to phase oscillators, the delay appears as a phase shift, i.e. one
obtains an undelayed system of the form

dθj

dt
= ωj +

K

2M + 1

M∑

k=−M

sin (θj+k − θj − α|k|∆x) (34)

where α is a constant [7, 15]. We will not consider such a system here.

D. Distributed delay

We now consider distributed delays. Let us define the complex mean field as in (3) but then
suppose that oscillator j is influenced by a delayed version of Zj, as in [31, 39], i.e. define

Rj(t) =

∫ ∞

0

Zj(t − ∆)h(∆)d∆ (35)

where h(∆) is the probability density of the delay ∆, and let the oscillator dynamics be

dθj

dt
= ωj + KIm

[
Rje−iθj

]
= ωj +

K

2i

[
Rje−iθj − Rjeiθj

]
(36)

(As presented, we calculate Rj(t) by first forming the local mean field and then delaying it. Since
the sum in (3) and the integral in (35) commute we can also think of Rj(t) as resulting from first
delaying all the θs and then forming the local mean field from those delayed values.) Moving to the
continuum limit and performing the integrals as above we obtain

∂u(x, t)

∂t
= (−1 + iΩ0)u(x, t) +

K

2

[
R(x, t) − R(x, t)u2(x, t)

]
(37)
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Setting a = 0 we find that a q-twisted state is created at

K =
2

Ĝ(q)

(
1 +

τ2Ω2
0

(1 + τ)2

)
(43)

Instead of varying τ we will set τ = 2 and vary Ω0, as doing so leads to some interesting be-
haviour [31, 39]. As in Sec. II B we move to a rotating coordinate frame at speed ν, i.e. let

ũ(x, t) = u(x, t)e−iνt, R̃(x, t) = R(x, t)e−iνt and Z̃(x, t) = Z(x, t)e−iνt so that ũ is a fixed point
of

∂ũ(x, t)

∂t
= (−1 + i(Ω0 − ν))ũ(x, t) +

K

2

[
R̃(x, t) − R̃(x, t)ũ2(x, t)

]
(44)

where

τ
∂R̃(x, t)

∂t
= Z̃(x, t) − R̃(x, t) − iντR̃(x, t) (45)

and

Z̃(x, t) =

∫ 2π

0

G(x − y)ũ(y, t)dy (46)

Following bifurcations of twisted states we obtain the results in Fig. 5. For Ω0 small we obtain similar
results to previous sections, but for larger Ω0 we see that twisted states are created in saddle-node
bifurcations as K is increased. In this range the bifurcation from the zero state is subcritical, leading
to the creation of an unstable branch which is stabilised through either a saddle-node bifurcation
(for q = 0) or in a Hopf bifurcation (for q > 0).

Figure 6 shows a plot of a versus K for Ω0 = 2.5, i.e. at the right edge of Fig. 5. Recalling
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FIG. 8: Solutions of (37)-(38). Top: Re(u); bottom: |u|, shown color-coded. Parameters as in Fig. 7.
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FIG. 9: Travelling wave solution of (47)-(48). 1 − cos θ is shown in colour. Parameters: N = 256,M =
16, I0 = −0.2,∆ = 0.05, g = 11, n = 2.

shown in Fig. 10. These pulses move with a fixed profile at a constant speed. Note that the argument
of z increases through π once as we move around the domain, and this point corresponds to the
maximum of the firing frequency, as expected. (The network also supports travelling pulses with
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