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particular network will synchronise [3,25]. Periodic forcing of systems is also
ubiquitous [16,39], and so it is natural to study the entrainment of a net-
work of coupled oscillators by a periodic forcing function. Many authors have
studied small networks of two or three non-identical oscillators [3], and larger
networks of oscillators that may have some symmetry [18,25] or a particular
form of coupling [34]. The continuum limit in which there exists an infinite
number of oscillators has also been studied in detail and many results are
known for this case [2,4,17,24,38]. However, it is known that finite networks
can show behaviour that does not occur in the continuum limit [4,12]. In many
situations, finite networks are the most realistic way to model a physical sys-
tem [6,12,35]. Results for large, finite networks will thus help bridge the gap
between small network dynamics (for which bifurcation analysis is straightfor-
ward) and those for an infinite number of oscillators (where statistical physics
provides the appropriate tools).

In this paper we consider a large but finite heterogeneous network of globally-
coupled oscillators, which are collectively periodically forced. However, we
do not analyse the system exactly; instead we analyse a low-dimensional de-
scription of it. This is the “equation-free” approach developed by Kevrekdis
et al. [23]. The results here extend those of Moon et al. [30,32], obviating
a reduction to phase oscillators: we consider two-variable (rather than sin-
gle variable) oscillators, capable of undergoing Hopf bifurcations; we consider
periodic forcing of the network, and we perform bifurcation analysis on the
low-dimensional description of the system to understand how the behaviour
of the full system changes as parameters are varied. We will not take the con-
tinuum limit as the number of oscillators tends to infinity, but instead analyse
the realistic case of a finite number of oscillators.

The system we study is
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for i = 1, . . . , N , where N is the number of oscillators in the network. For
most of this paper we set N = 500. The oscillators are van der Pol oscil-
lators [19] with an extra term (x2

i /2) which breaks the internal symmetry
[(x, y) → (−x, −y



The µi are taken from a normal distribution with mean 0 and standard devia-
tion 1. (As discussed below, the methodology can be used with other distribu-
tions.) If β 6= 0 the network is heterogeneous, and each oscillator, if uncoupled,
would have a different angular frequency determined by the value of φ + βµi.
When A = 0, for β small enough, φ of moderate size and ǫ large enough,
the oscillators synchronise in the sense of having the same period. Note that
oscillators i and j cannot synchronise in the sense of xi(t) = xj(t) for all t
unless µi = µj. In this synchronised state the attractor of the system is a
periodic orbit, which could be parametrised by a periodic variable, say θ(t).
The variables x1, . . . xN , y1, . . . , yN could each then be written as functions of
θ. This description would no longer be valid if one or more of the oscillators
“unlocked” from the group.

We want to study the system in this synchronised state, but do not want to
keep track of all the 2N variables x1, . . . xN , y1, . . . , yN . Instead, we describe
the state of the system by a small number of variables. We cannot easily
derive an equation that governs the dynamics of these variables, but by re-
peatedly mapping between the two levels of description of the system we can
numerically evaluate the results of integrating these unavailable equations; we
can also find their collectively periodic states and their dependence on pa-
rameters, without ever obtaining the reduced equations in closed form. This
low-dimensional description results in computational savings by, for example,
giving a much smaller Jacobian matrix.

If the system is in this synchronised state and we increase A from zero, it will
become periodically driven and it may be possible for the oscillators to lock
with the driving frequency [16]. The latter part of this paper will consider
this phenomenon in detail, but we first discuss the particula
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Armed with these two operators we can now proceed to numerically solve the
unavailable equation for the polynomial chaos coefficients.

3 Coarse Projective Integration

Coarse projective integration entails accelerating the simulation of a high-
dimensional system by projecting forward in time using only the variables
in a low-dimensional description of the system. This is accomplished by oc-
casionally performing short bursts of full simulation of the high-dimensional
system in order to obtain the numerical information (estimation of the time-
derivatives of the low dimensional description variables) required to perform
accurate projections [23,30,32]. We can use the low-dimensional description
in the previous section for coarse projective integration as follows. For conve-
nience, let the high-dimensional description be the variable

X = [x1, . . . , xN , y1, . . . , yN ] ∈ R
2N (9)

and the low-dimensional polynomial chaos coefficient description be the vari-
able

Z = [a0, . . . , aq, b0, . . . , bq] ∈ R
2(q+1). (10)

Given X(0), integrate (1)-(2) forward for N1 steps of size δt. Calculate Z at
some or all of the times t = 0, δt, 2δt, . . . , N1δt using the restriction opera-
tor. Use these values of Z to extrapolate the values of Z to a time N2δt in
the future, i.e. to time (N1 + N2)δt. Lift from the value of Z((N1 + N2)δt)
to X((N1 + N2)δt) as detailed above. Restart the integration of (1)-(2) us-
ing X((N1 + N2)δt) as the initial condition and integrate for a further N1

time steps. Restrict to Z and repeat the procedure. If the cost of restrict-
ing, extrapolating and lifting is small compared to the cost of integrating the
system (1)-(2) for N2 time steps, this procedure may well be faster than in-
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value of Zj is then f j(N2δt). The top panel of Fig. 3 shows the speedup
as a function of N2. The speedup is defined as the time taken to directly
integrate (1)-(2) over 0 < t < 100 with time-step δt divided by the time taken
to integrate over 0 < t < 100 using coarse projective integration, as described.
A speedup greater than 1 (N2 greater than approximately 10) means that



4 The 1:1 orbit

Consider the case of 1:1 locking, i.e. solutions for which each oscillator under-
goes one oscillation during each forcing period. The usual way to study this
would be to “strobe” the system once each forcing cycle. Defining Xp to be
the state of the system at t = 2πp/ω, where p is an integer, i.e.

Xp = X(2πp) ∈ R
2N (11)

where X is defined in (9), we could construct a map g : R
2N → R

2N as

Xp+1 = g(Xp) (12)

A 1:1 locked orbit is then a fixed point of g and its stability is determined by the
eigenvalues of the Jacobian of g





5.2 Varying β



lators (those with the highest values of µ) are not synchronised with the main
cluster, either inside or outside of the tongue. However, the remaining ∼ 99%
are synchronised with each other and using the “macroscopic” approach taken
here we can detect whether this large cluster is synchronised with the forcing
signal or not.

As β is increased, the fraction of oscillators no longer locked to the main cluster
increases and the description of the system from the macroscopic point of
view as a forced super-oscillator, using polynomial chaos coefficients, becomes
increasingly flawed. This is the reason for deciding to terminate the curves in
Fig. 8. Note that the two curves in Fig. 8 terminate at different values of β,
but for both curves, the saddle-node bifurcation following algorithm fails to



saddle-node bifurcation of periodic orbits. This walkthrough occurs approxi-
mately periodically, and the period scales as |ω−ω∗|−1/2, where ω∗ is the value
of ω at the relevant tongue boundary [11]. As can be seen, this slow oscillation
can be made arbitrarily slow by adjusting ω.

A similar phenomenon occurs in our system, but with a slight d



curves using standard algorithms [10], and the results for the left cusp are
shown in Fig. 12, both for a single oscillator and for the inhomogeneous net-
work of 500 oscillators. (We also followed the Hopf bifurcation curve associated
with the right cusp, not shown.) The Hopf bifurcations correspond to a com-
plex conjugate pair of eigenvalues crossing out of the unit circle in the complex
plane as ω is decreased. Writing these eigenvalues at bifurcation as e±iθ, we
have θ = 0 at the rightmost point of the Hopf bifurcation curve (i.e. eigen-
values of +1, +1) and θ monotonically increases as ω is decreased until θ = π
(i.e. eigenvalues of −1, −1) at the leftmost point on the Hopf bifurcation curve.

Note that while following the curve of Hopf bifurcations for the network, we
could not use a larger value of β than β ≈ 0.3 (i.e. we could not use a more
heterogeneous network) because for larger values of β the oscillators with
the largest values of µ would become desynchronised from the rest as the
bifurcation was approached. The problem discussed in Sec. 5.2 regarding the
effectiveness of the macroscopic approach would then reoccur.

The Hopf bifurcation for a single forced oscillator is super



The main result of this paper is the demonstration that the dynamics of large,
heterogeneous networks of forced coupled oscillators can be simulated and
analysed using a low-dimensional description of the state of the network, pro-
vided that all or most of the oscillators are synchronised with one another.
The reduction to a low-dimensional description is performed “on the fly” and
results in considerable computational simplification. For this specific network
and heterogeneity we found that the effects of heterogeneity are to move the
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Fig. 8. Boundaries of the 1:1 Arnold tongue, averaging over between 20 and 60
realisations. The curves terminate as β is increased because the oscillators become
too heterogeneous to synchronise among themselves. N = 500 and A = 0.5. Other
parameters are ǫ = 1, φ = 1.
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Fig. 10. Boundaries of the 1:1 orbit. Solid line: one oscillator. Dashed line: a network
with N = 500 and A = 0.5, β = 0.3, r = 20, ǫ = 1.
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Fig. 11. x at multiples of 2π/ω for the 1:1 orbit of a single oscillator, as ω is varied.
Solid line: stable, dashed: unstable. Parameters are A = 0.5, φ = 0.8. This figure is
a horizontal slice at φ = 0.8 through Fig. 10.
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